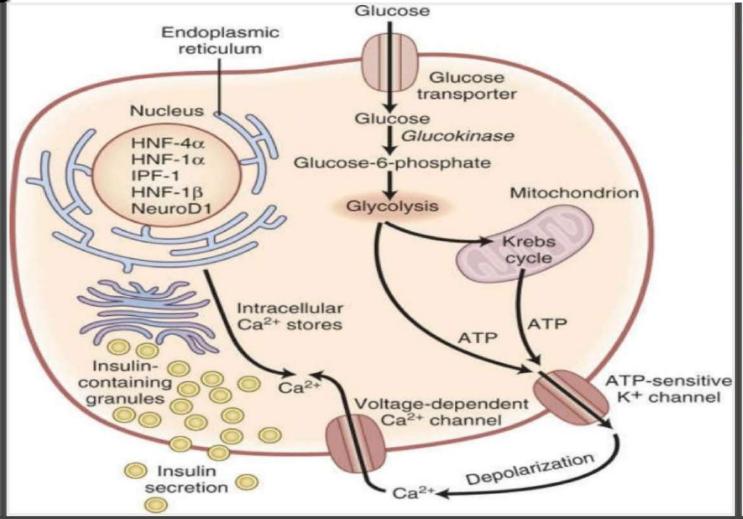


New Guidelines;

Implications on Clinical Practice

1


- Diabetes in Children What are the possibilities?
 - How would you differentiate each types from others?

Diabetes in children Monogenic diabetes

Monogenic diabetes

- Inheritance of mutation in single gene
- Dominant, recessive or denovo
- Mutation in genes which regulate beta cell function
- Rare cases due to insulin resistance(I Receptor Leprechaunism, Rabson Mendenhall)
- Can mimic type 1 or type 2 diabetes
- Diagnosis is important to elucidate the pathophysiology , change the treatment and find the affected family screening

How beta cell functions are governed by genes

Mechanism of beta cell function

- Reduce beta cell number
- Pancreatic aplasia
- Reduce beta cell development
- Reduce metabolism
- Reduce glucose sensing

- Failure to depolarize memb
- Failure to close KATP channel

Gene mutation

- IPF1homozygous
- HNF1β
- GCK
- HNF1B
- HNF1α
- HNF4 α
- IPF1 heterozygous
- KCNJ11
- ABCC8

When to suspect

- Neonatal diabetes and diabetes associated within the first 6 months of life
- Familial diabetes with an affected parent
- Mild (5.5-8.5 mmol/L) fasting hyperglycemia especially if young or familial
- Diabetes associated with extra pancreatic features Renal cysts & developmental kidney disease

How to diagnose

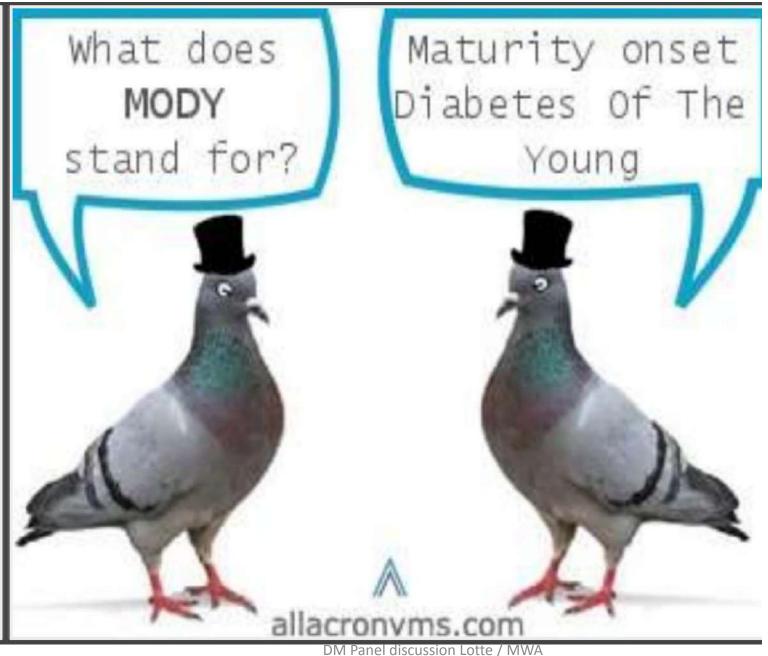
- Molecular testing for mutations Costly
- Careful patient selection for C peptide level and autoantibody testing
- Genetic testing is recommended if
- Diabetes is diagnosed within first 6months of age
- Diabetes is diagnosed in children and young adults, with strong family history of diabetes, who do not have typical features of type 1 or type 2 diabetes –autoantibodies, metabolic features
- A person has stable, mild fasting hyperglycemia especially when obesity is not present

Neonatal Diabetes

- Rare form of diabetes , usually diagnosed in children under 6 months of age
- 1 in 300,000 to 400,000 births
- Due to genetic mutation , so can described as monogenic form of diabetes
- 2 main types Transient Neonatal diabetes mellitus(TNDM)
 - Permanent Neonatal diabetes mellitus(PNDM)
- Caused by defects in insulin secretions

beta cell development

Salient features of NDM


- Hyperglycemia occurs within the first month of life
- requiring management with insulin at diagnosis as pancreas fail to produce insulin
- Lasting weeks to months
- Presents with IUGR , volume depletion, glycosuria, polyuria, profound hyperglycemia ,ketonuria, ketoacidosis
- Half of NDM can be treated with sulphonylurea, some may need insulin

TNDM

- Accounts for 50% of NDM cases
- 60 to 80% of TNDM patients, display
- Genetic mutations mostly on chromosome 6q abnormalities
- Course of TNDM is highly variable
- TNDM resolution within first several weeks or months (12 weeks)
- Reappearance of diabetes in adolescence and later years

PNDM

- Accounts for remaining half of all cases of NDM
- Mutation in K channels on pancreatic beta cells
- ABCC8 & KCJN11
- Leads to decreased insulin secretions
- Long term sequelae of either type : developmental delay, cardiac abnormalities, seizures, poor weight gain

12/18/2018

DM Panel discussion Lotte / MWA

Maturity Onset Diabetes of the Young

- Early onset diabetes (<25 years) misdiagnosed as T1D
- Non insulin dependent
- Autosomal dominant inheritance
- Caused by single gene defect altering beta cell function
- Obesity unusual , no features of insulin resistance

- Primary defect in insulin secretion
- First degree relative with similar degree of glycemia
- Low renal threshold (glycosuria) with mild hyperglycemia
- Absence of positive autoantibodies
- Evidence of endogenous insulin production past the " honeymoon" phase – c peptide normal

How to D/D MODY with Type 1 DM?

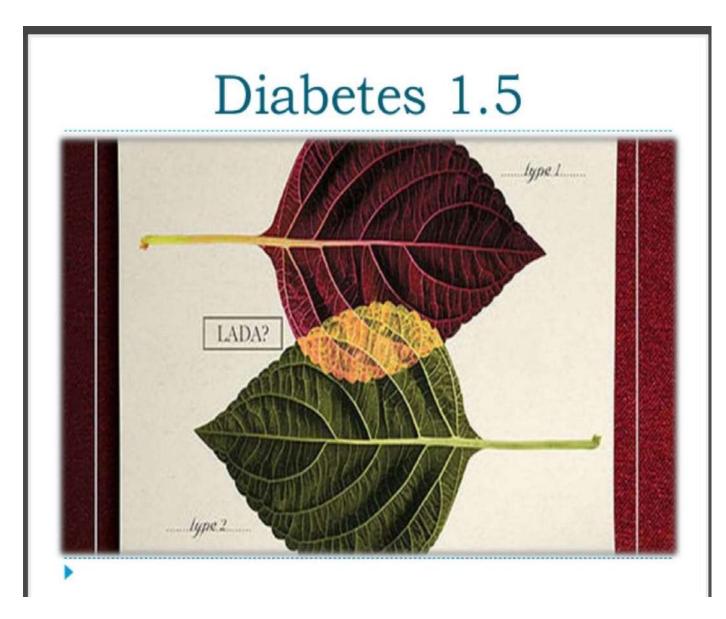
- C peptide is normal
- GAD 65 negative (Glutamic Acid Decarboxylase)
- ICAs negative (Islet cell antibody)
- IA2 negative (Insulin Antibody)

How to D/D MODY with Type 2 DM? Almost similar to Type 2 DM except:

- Young age
- Running in Family and
- Molecular genetic to identify defective gene.

MODY TYPE	MUTATION	GENE defect	Treatment
MODY1	Chromosome 12	HNF 1α	SU (40%) <i>,</i> insulin (20%)
MODY2	Chromosome 7p	GCK	Diet , physical activities
MODY3	Chromosome 20	HNF 4α	1/3 SU, 1/3 insulin
MODY4	Chromosome 13	IPF 1	SU mostly
MODY5	Chromosome 17	HNF 1β	Atrophy of pancreas & renal cyst-insulin only
MODY6	Chromosome 2	Neuro D1	Insulin

MODY 3 is commonest type (70%), MODY 2 is second commonest (14%) , MODY 1 (5%) ,MODY 4 <1%


Treatment for MODY

- Therapy depend on involved gene and severity
- MODY 1 & 3 can be initially treated with sulphonylureas which prompts the body to produce insulin , a few will need insulin in late stage
- MODY 2 may be treated with diet only and no medications required
- MODY 5 & 6 need insulin treatment

Diabetes in the Early Adulthood

Youth onset Type 2 DM

- Clearly differ from Type 1
- More closely resemble the pathophysiology in adult : Insulin resistance & non auto immune Beta cell failure
- Rapidly progressive beta cell decline
- Accelerated development of diabetes complications
- Treatment options: insulin & metformin and promotion of healthy life style

Latent Autoimmune Diabetes of Adulthood (LADA)

- Late autoimmune diabetes of adult is a form of autoimmune (Type 1 DM) which is diagnosed in individuals who are older than usual age of onset of T1DM
- Slow onset Type 1 DM in adulthood
- Also called Type 1.5 diabetes
- Mistakenly diagnosed as Type 2 DM
- Progress to insulin requirement within years

Characteristics of LADA

- Age of onset 30 years or older (30 to 50)
- May initially appear to be non obese T2 diabetes
- Initially treated with nutrition and exercise and free from insulin for first 6 months after diagnosis
- OHA don't help much (some worsen autoimmunity)
- Positive for at least one of the autoantibodies found in type 1 GAD antibodies commonly positive
- Low levels of C Peptide Vs high levels in Type 2DM
- Present with symptoms of hyperglycemia
- Ketosis prone
- May become insulin dependent later due to gradual destruction of beta cells (after 6 years)

ADA Recommendations: Monogenic Diabetes Syndromes

• All children diagnosed with diabetes in the first 6 months of life should have genetic testing for neonatal diabetes. A

 Children and adults, diagnosed in early adulthood, who have diabetes not characteristic of T1D or T2D that occurs in successive generations should have genetic testing for MODY. A

Distinct Etiologies and Characteristics

1	T1D	'LADA'	T2D	MODY
Typical Age of Onset	All Ages	Usually Age >30	Adults	Usually Age <25
% of all Diabetes	10%	10%	75%	5%
Typical BMI	Mostly Normal or Thin	Mostly Normal or Overweight	Mostly Overweight or Obese	Mostly normal
Ethnicity	All	All	All	All
Progression to insulin Dependence	Fast (Days/Week)	Latent (Months/Years)	Slow (Years)	Depends on MODY type
Insulin Resistance	Mostly no; ~10% ,yes	Some	Yes	Depends on MODY type
Presence of Autoantibodies	Yes (ICA, IA2, GAD65, IAA)	Yes (mostly GAD65), Some not	Some	No
T cell Reponses to islet proteins	Yes	Yes	No	No
Insulin/ C-peptides Level at diagnosis	Undectable or extermely low	Low	Normal to High	Normal
Ketoacidosis	Yes	Yes, many not all	Rare	Rare
Insulin Secretion	Low/null	Varies	Varies	Varies
Islet Inflammation	Chronic Inflammation	Chronic Inflammation	Chronic Inflammation	None
HLA Link	High	Low	None	None
TCF7L2 Link	None	In some pop'n, stronger link than T2D	?5%	None
Other Genes Involved	PTPN22; INS; CTLA4; CCR5; FOXP3;CLEC16a HNF1A; IL2RA; IL6; ITPR3; OAS1; SUMO4	PTPN22; INS	PPARG; JAZF1; KCNJ11; NOTCH2; WFS1; IGF2BP2; FTO; SLC30AB; HHEX	HNF4A; GCK; HNF1A; IPF1; HNF1B; NEUROD1
Early Treatment	Insulin required, diet & exercise helpful	Non-Insulin or insulin, diet & exercise helpful	Non-Insulin, diet & increased activity	Gene Specific
Late Treatment	Insulin, diet, exercise	Insulin, pills, diet, exercise M Panel discussion Lotte / M	Insulin, pills, diet, exercise	Gene Specific

12/18/2018

DM Panel discussion Lotte / MW

Diabetes and the Elderly : Points to ponder

- Diabetes mellitus (DM) frequency is a growing problem worldwide, because of long life expectancy and life style modifications. In old age (>65 years old), DM is becoming an alarming public health problem in developed and even in developing countries
- People with diabetes have higher incidence of all-cause dementia, Alzheimer's disease and vascular dementia than people with normal glucose tolerance

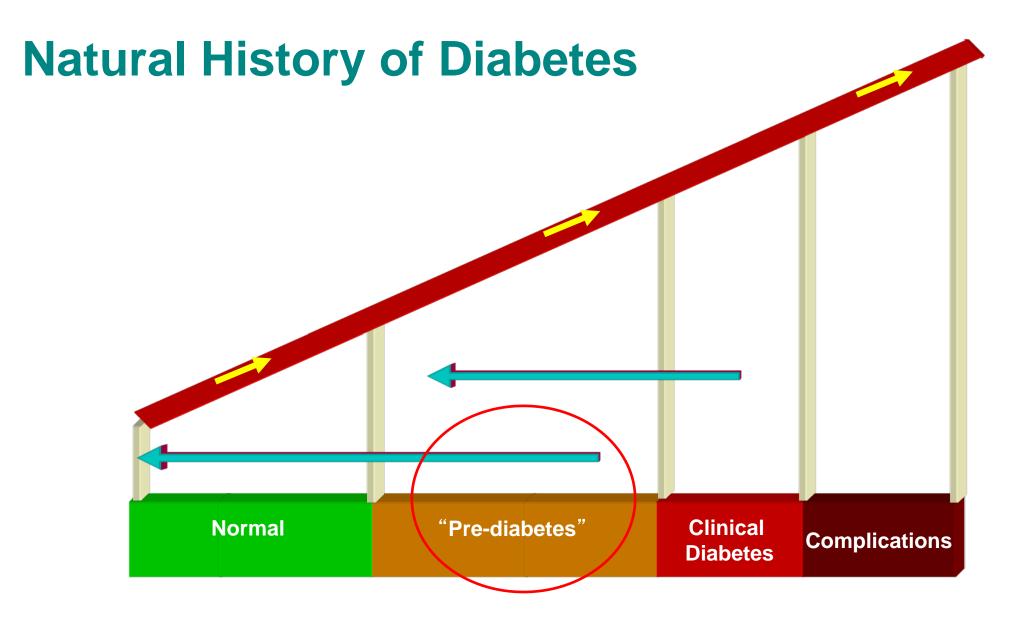
ADA Recommendation

- Hypoglycemia should be avoided in older adults with diabetes. It should be assessed and managed by adjusting glycemic targets and pharmacologic interventions. C
- Healthy older adults with few coexisting chronic illness and intact cognitive function and good functional status. A1C
 <7.5(58mmol/mol). C
- Those with multiple coexisting chronic illness, cognitive impairment and poor functional status.A1C <8.0 to 8.5% (64-69mmol/mol).C

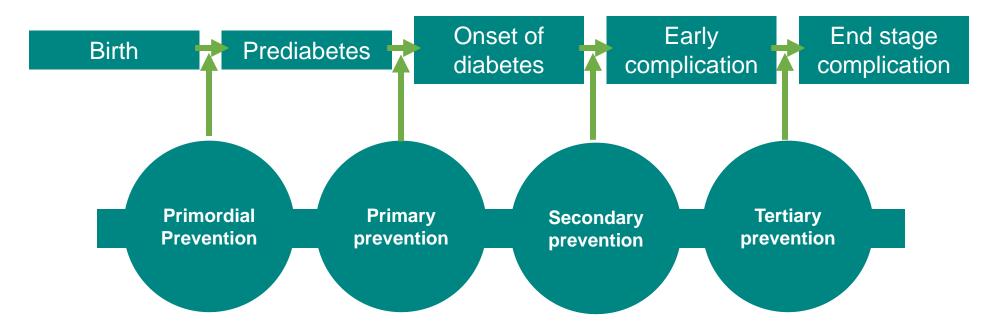
- Treatment of hypertension to individualized target level is indicated in most older adults. C
- Treatment of other cardiovascular risk factors should be individualized in older adults considering the time frame of benefit.
 C.
- There is less evidence for lipid lowering therapy and aspirin therapy
- For patients receiving palliative care and end-of-life care, the focus should be to avoid symptoms and complications from glycemic management.

- In older adults at increased risk of hypoglycemia, medication classes with low risk of hypoglycemia are preferred. B
- Overtreatment of diabetes in older adults is common and should be avoided. B
- the fundamental rule is "go slowly and individualize" to avoid interaction with poly medicated elder persons and fatal iatrogenic hypoglycemias in those treated with sulfonylureas or insulin.

- <u>Depression</u> screening in the elderly population with diabetes is of great importance, as elderly patients with diabetes experience more isolation, less support, and more feeling of hopelessness
- The elderly with diabetes who are capable of activities of daily living without assistance, and who have no cognitive impairment should have A1C and blood sugar goals similar to that of a younger person.


Choice of therapy

- Metformin first line agent for older people with DM, can safely used until GFR > or = 30ml/min
- Thiazolidinediones not a good choice with risk of falls and fractures, contraindicated in CHF
- Insulin secretogauges sulphonylureas and others should be used with caution as risk of hypoglycemia, short acting ones are preferably used
- Incretin based therapies –oral DPP4 inhibitor has few side effects and minimal hypoglycemia, but cost may be barrier to some older patients
- SGLT2 inhibitors may be convenient for older adults but risk of genital fungal infections and UTI, euglycemic DKA, as well as long term experience is limited


Injectable therapy

- Multiple injections are complex and limited to the older adults who has reduced visual, motor and cognitive skills, even burden to the care givers
- Once daily basal injections may be useful of simplicity and low risk of hypoglucemia
- Well structured regime, timing and adjustment scheme should be educated to the care givers
- GLP1 agonists can cause nausea, vomiting and pancreatic side effects, so not a good choice for older adults with diabetes
- Successful diabetes care in aging population needs multidisciplinary approach

CAN WE PREVENT TYPE 2 DIABETES ?

Prevention Strategies Do Not End Once The Person Develops Diabetes!

35

Risk-Based Screening in Asymptomatic Children and Adolescents

Table 2.5—Risk-based screening for type 2 diabetes or prediabetes in asymptomatic children and adolescents in a clinical setting*

Criteria

 Overweight (BMI >85th percentile for age and sex, weight for height >85th percentile, or weight >120% of ideal for height) A

Plus one or more additional risk factors based on the strength of their association with diabetes as indicated by evidence grades:

- Maternal history of diabetes or GDM during the child's gestation A
- Family history of type 2 diabetes in first- or second-degree relative A
- Race/ethnicity (Native American, African American, Latino, Asian American, Pacific Islander) A
- Signs of insulin resistance or conditions associated with insulin resistance (acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, or small-for-gestational-age birth weight) B

*Persons aged <18 years.

ARE YOU AT RISK FOR TYPE 2 DIABETES? American Diabetes Association.

Diabetes Risk Test

How old are you?	Write your score	Height		Weight (lbs.)		
Less than 40 years (0 points)	in the box.	4' 10"	119-142	143-190	191+	
40—49 years (1 point)		4' 11"	124-147	148-197	198+	
50—59 years (2 points)		5' 0"	128-152	153-203	204+	
60 years or older (3 points)		5' 1"	132-157	158-210	211+	
Are you a man or a woman?		5' 2"	136-163	164-217	218+	
Man (1 point) Woman (0 points)		5' 3"	141-168	169-224	225+	
		5' 4"	145-173	174-231	232+	
If you are a woman, have you ever bee	n	5' 5"	150-179	180-239	240+	
diagnosed with gestational diabetes?		5' 6"	155-185	186-246	247+	
Yes (1 point) No (0 points)		5' 7"	159-190	191-254	255+	
		5' 8"	164-196	197-261	262+	
Do you have a mother, father, sister, or brother with diabetes?		5' 9"	169-202	203-269	270+	
		5' 10"	174-208	209-277	278+	
Yes (1 point) No (0 points)		5' 11"	179-214	215-285	286+	
Have you ever been diagnosed with his	gh	6' 0"	184-220	221-293	294+	
blood pressure?		6' 1"	189-226	227-301	302+	
Yes (1 point) No (0 points)		6' 2"	194-232	233-310	311+	
		6' 3"	200-239	240-318	319+	
Are you physically active?		6' 4"	205-245	246-327	328+	
Yes (0 points) No (1 point)			(1 Point)	(2 Points)	(3 Points	
What is your weight status? (see chart at right)	→		You weigh less than the amount in the left column (0 points)			

You are at increased risk for having type 2 diabetes. However, only your doctor can tell for sure if you do have type 2 diabetes or prediabetes (a condition that precedes type 2 diabetes in which blood glucose levels are higher than normal). Talk to

your doctor to see if additional testing is needed.

Type 2 diabetes is more common in African Americans, Hispanics/ Latinos, American Indians, and Asian Americans and Pacific Islanders.

Higher body weights increase diabetes risk for everyone. Asian Americans are at increased diabetes risk at lower body weights than the rest of the general public (about 15 pounds lower).

For more information, visit us at diabetes.org or call 1-800-DIABETES (1-800-342-2383)

Adapted from Bang et al., Ann Intern Med 151:775-783, 2009. Original algorithm was validated without gestational diabetes as part of the model.

Lower Your Risk

The good news is that you can manage your risk for type 2 diabetes. Small steps make a big difference and can help you live a longer, healthier life. If you are at high risk

If you are at high risk, your first step is to see your doctor to see if additional testing is needed. Visit diabetes or a set of the set of th

Visit diabetes.org or call 1-800-DIABETES (1-800-342-2383) for information, tips on getting started, and ideas for simple, small steps you can take to help lower your risk.

Visit us on Facebook Facebook.com/AmericanDiabetesAssociation

12/18/2018

Testing for Diabetes or Prediabetes in Asymptomatic Adults

Table 2.3-Criteria for testing for diabetes or prediabetes in asymptomatic adults

- Testing should be considered in overweight or obese (BMI ≥25 kg/m² or ≥23 kg/m² in Asian Americans) adults who have one or more of the following risk factors:
 - First-degree relative with diabetes
 - High-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific Islander)
 - History of CVD
 - Hypertension (≥140/90 mmHg or on therapy for hypertension)
 - HDL cholesterol level <35 mg/dL (0.90 mmol/L) and/or a triglyceride level >250 mg/dL (2.82 mmol/L)
 - Women with polycystic ovary syndrome
 - Physical inactivity
 - Other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)
- 2. Patients with prediabetes (A1C \geq 5.7% [39 mmol/mol], IGT, or IFG) should be tested yearly.
- 3. Women who were diagnosed with GDM should have lifelong testing at least every 3 years.
- 4. For all other patients, testing should begin at age 45 years.
- If results are normal, testing should be repeated at a minimum of 3-year intervals, with consideration of more frequent testing depending on initial results and risk status.

Categories of Increased Risk for Diabetes (Prediabetes)

Table 2.4—Categories of increased risk for diabetes (prediabetes)* FPG 100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9 mmol/L) (IFG)

OR

2-h PG during 75-g OGTT 140 mg/dL (7.8 mmol/L) to 199 mg/dL (11.0 mmol/L) (IGT)

OR

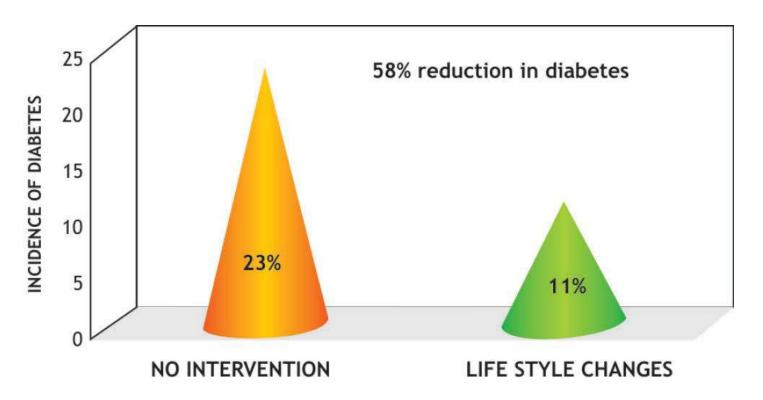
A1C 5.7-6.4% (39-47 mmol/mol)

*For all three tests, risk is continuous, extending below the lower limit of the range and becoming disproportionately greater at the higher end of the range.

To Whom Should Prevention Strategies Be Aimed?

"Pre-diabetic" states viz. IGT and IFG are known to be associated with an increased risk of progression to diabetes

Hence these individuals are ideal candidates for application of prevention strategies


A fasting plasma glucose or an oral glucose tolerance test can be used to detect these individuals

How Best Can Diabetes Prevention Be Achieved?

- Dietary modification
- Increasing physical activity
- Drugs
- A combination of the above

Finnish Diabetes Prevention Study

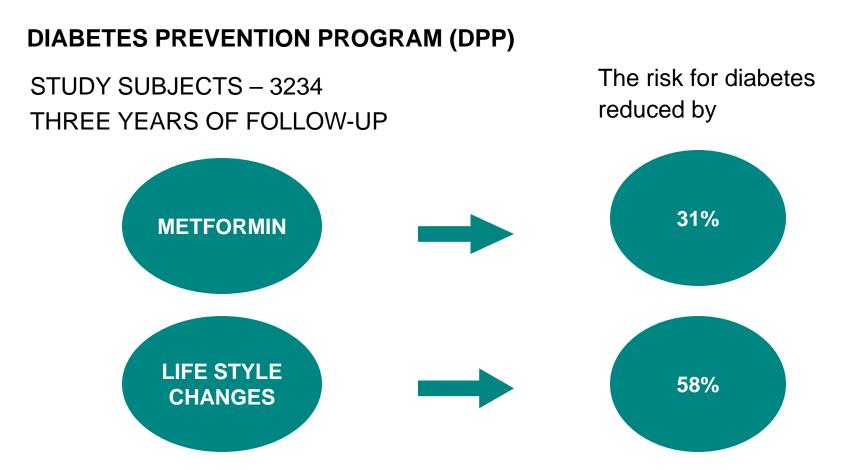
STUDY SUBJECTS - 522 FOUR YEARS OF FOLLOW-UP OF PROGRESSION TO DIABETES

Lifestyle Modification

Found to be more effective than metformin in the DPP

Recommendations:

- Modest weight loss (5 to 10% of weight)
- Modest physical activity (30 minutes per day)


- Higher intakes of nuts ,berries,yogurt ,coffee, and tea are associated with reduced diabetes risk.
- Conversely, red meats and sugar-sweetened beverages are associated with an increased risk of type 2 diabetes

Lifestyle Modification – Advantages

Advantages

- Safe
- Effective
- Inexpensive
- Can be advised for almost anyone
- Has additional benefits on lipids, BP, CV health etc

Evidence For Effectiveness of Pharmacological Interventions In Prevention of Diabetes

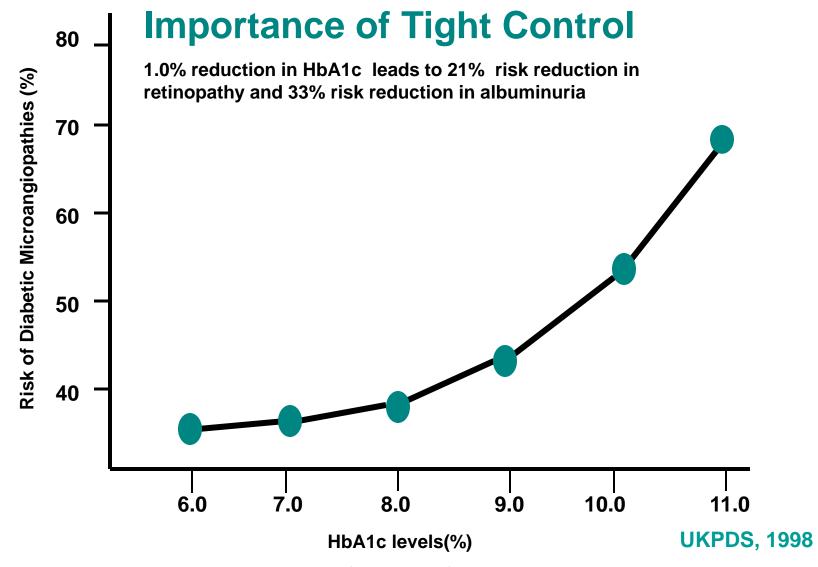
Pharmacologic Interventions for Prevention: Recommendations

- Metformin therapy for prevention of type 2 diabetes should be considered in those with prediabetes, especially for those with BMI ≥35 kg/m², those aged <60 years, and women with prior GDM. A
- Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy. B

Prevention of Diabetes – Major Trials

Study	Results (Risk Reduction)	Year
DIABETES PREVENTION PROGRAM Life style modifications & drugs (n=3200)	Metformin – 31% Life style changes – 58%	1996
FINNISH DIABETES PREVENTION STUDY Life style modifications (n=522)	Diet + exercise – 58%	1993
DA QING IGT AND DIABETES STUDY Life style modifications (n=577)	Diet – 31% Exercise – 46%	1986
STOP NIDDM Acarbose (n=1429)	Acarbose – 36%	1998
INDIAN DIABETES PREVENTION PROGRAM Life style modifications & drugs (n=531)	Metformin – 26.4% Lifestyle – 28.5% Met + Lifestyle – 28.2%	2006
DREAM Rosiglitazone & Ramipril (n=5269)	Rosiglitazone – 70% (IFG) 55% (IGT) Ramipril – NS	2006
NAVIGATOR Nateglinide & Valsartan (n=9306)	Nateglinide – NS Valsartan – 14%	2010

48

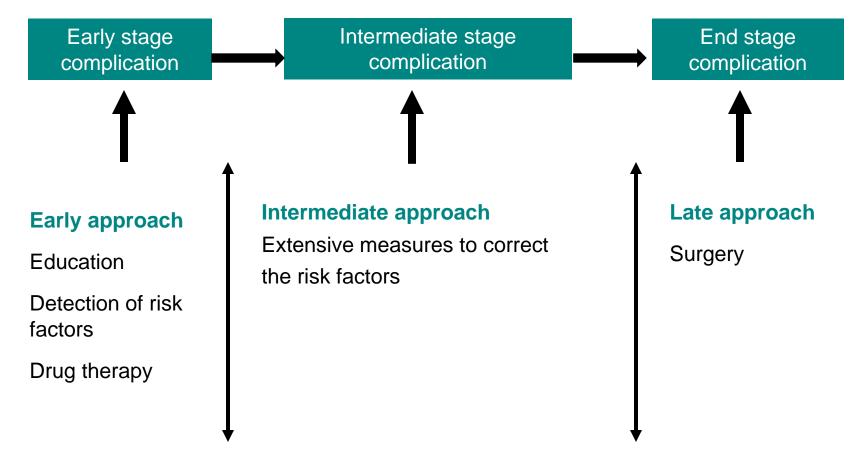

Secondary Prevention

Preventing micro and macrovascular complications by good diabetes control

THREE MAIN APPROACHES

- Control of hyperglycaemia
- BP control
- Correction of hyperlipidemia

49


Strategies For Prevention of Diabetes Complications

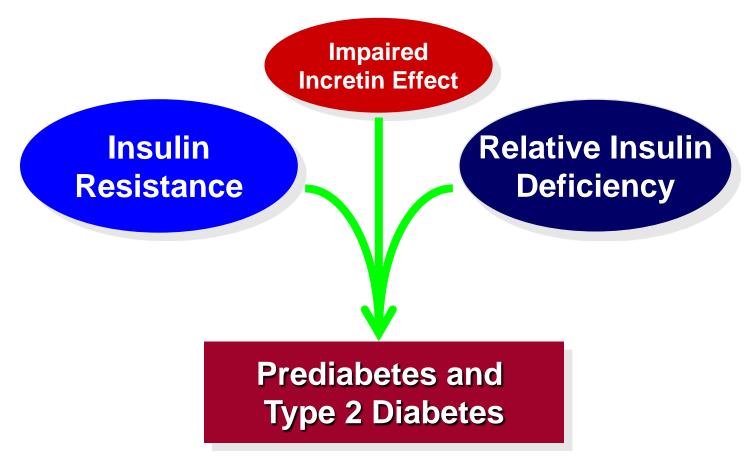
Complication	Early approach	Intermediate approach	Late approach
Diabetic retinopathy	Glycemic control, Blood pressure control, Lipid control	Photocoagulation	In vitreo-retinal surgery
Diabetic nephropathy	Glycemic control, Blood pressure control, Lipid control	ACE inhibitors	Dialysis Transplantation
Peripheral neuropathy	Glycemic control, Foot wear	Management of neuropathic pain? neuroprotective agents	Prompt intervention (antibiotics, surgery), Custom made foot wear, Corrective surgery
Macrovascular disease	Glycemic control, Blood pressure control, Lipid control	Antiplatelet drugs	Revascularisation Surgery

51

Tertiary Prevention

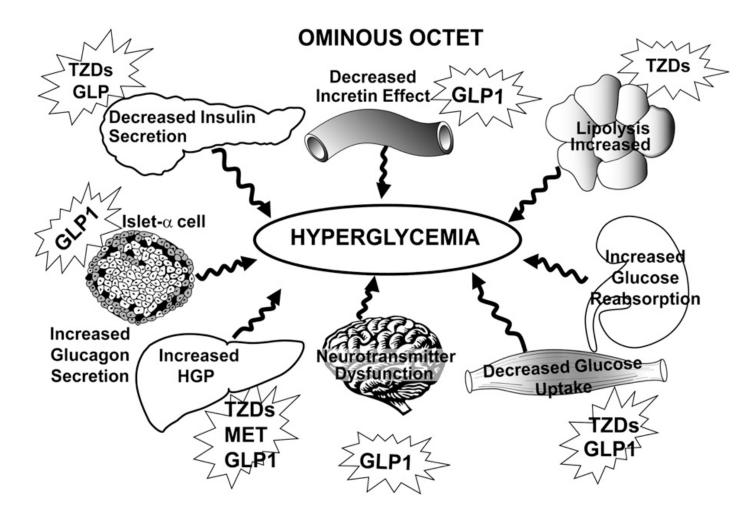
Limiting physical disability and rehabilitation measures in those who have already developed diabetic complications

Conclusions


- Type 2 diabetes is preventable
- Detect individuals with IGT and IFG and direct prevention strategies to them
- Lifestyle modification is the key to prevent diabetes
- Drugs may have a role in some cases
- Even after diabetes develops, good control of glucose, lipids and BP can prevent complications

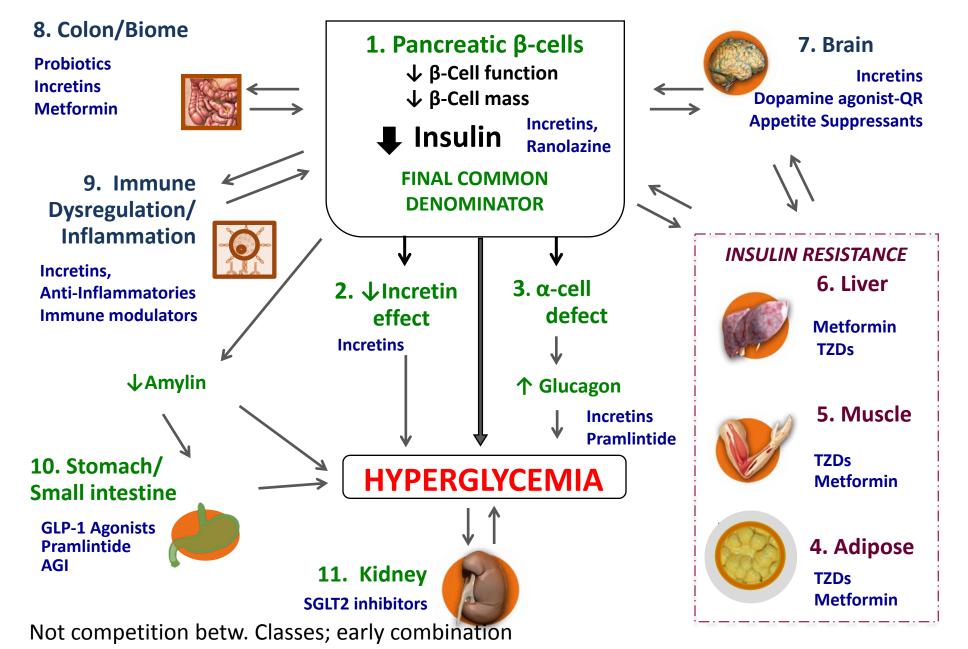
Current Understanding on the

pathogenesis of Type 2


Diabetes?

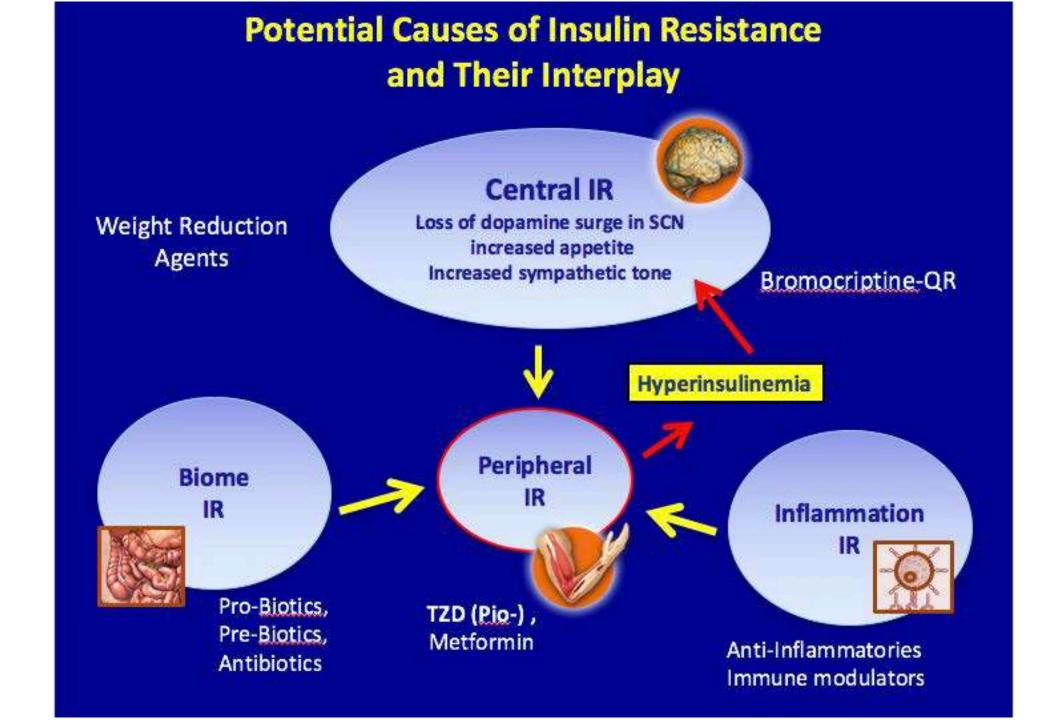
Multiple Defects Underlie the Pathophysiology of Type 2 Diabetes

Ominous Octet

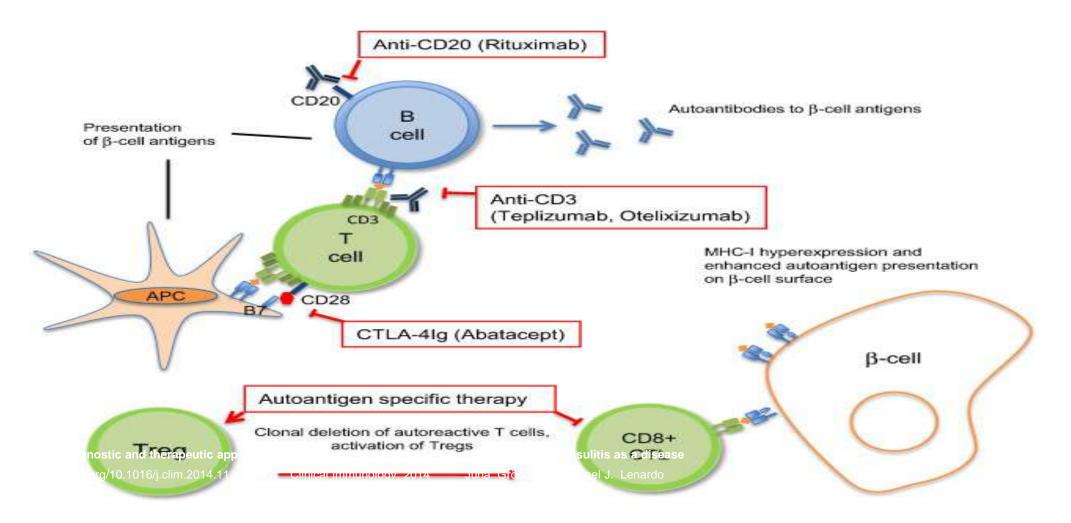

Pathophysiology of T2 Diabetes & General Therapeutic approach

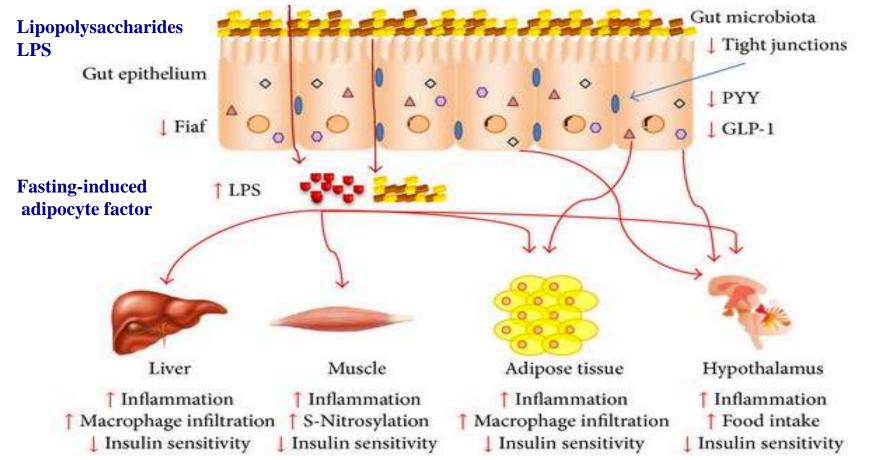
Therapeutic options as they relate to key pathophysiological derangements in T2DM

Diabetes. 2009 April; 58(4): 773–795.

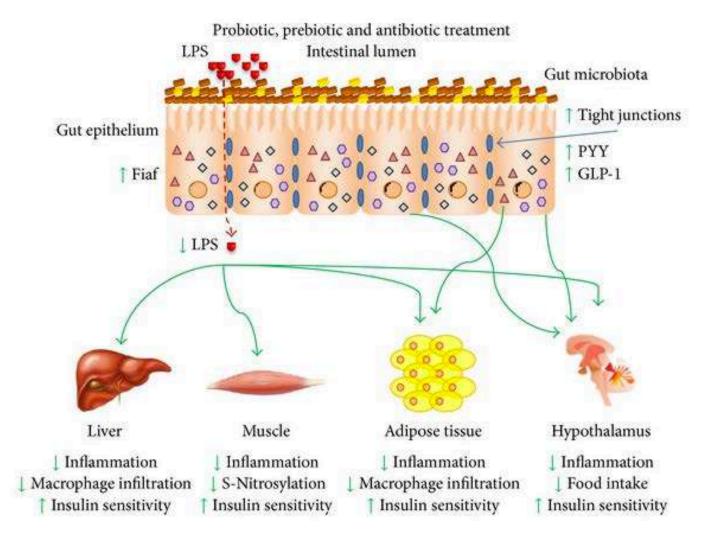

B. β-Cell-Centric Construct: Egregious Eleven Targeted Treatments for Mediating Pathways of Hyperglycemia

Least # meds, Rx most # mechanisms of Htperglycemia-Preserve b-cells, rather than destroy them


*****Implications for New Guidelines**


Pathogenesis and biological interventions in T1DM- LIKE autoimmune diabetes- Insulitis

The class I MHC molecules are hyperexpressed on the β-cell surface in T1D patients making β-cells more susceptible to cytotoxic lymphocyte (CTL)-mediated destruction.


Figure 1

Metabolic Derangement, and Insulin Resistance Associated with Microbiome

Pioglitazone Treats Secondary Adverse Effects of Abnormal Biome

Probiotic, Prebiotic and Antibiotic Treatment of Abnormal Gut Biome

RANOLAZINE CAN BE USED IN PATIENTS WITH CAD AND DIABETES

- Ranolazine affects Na+ channel function in cardiomyocytes, and is likely to do the same in beta-cells
- Ranolazine is approved for treatment of ischemic anginal-equivalents
- Ranolazine significantly and dose- dependently reduces HbA1c.
- The magnitude of HbA1c lowering by ranolazine is correlated with the levels of HbA1c and FPG at baseline.
- Ranexa does not increase the incidence of hypoglycemia compared with placebo
- Ranexa does not increase the incidence of:
 - Weight gain
 - Cardiovascular adverse events
 - Dyslipidemia (LDL, HDL, total cholesterol, and triglycerides)
 - No Clinically relevant changes in blood pressure or heart rate

Bromocryptine QR: Proposed mechanism of action

Morning administration (within 2 hours of waking) of AGENT Corrects Low dopaminergic tone in hypothalamus in early morning in diabetes

The Arthies

Sympathetic tone
HPA axis tone
Hepatic gluconeogenesis
FFA and TG
Insulin resistance

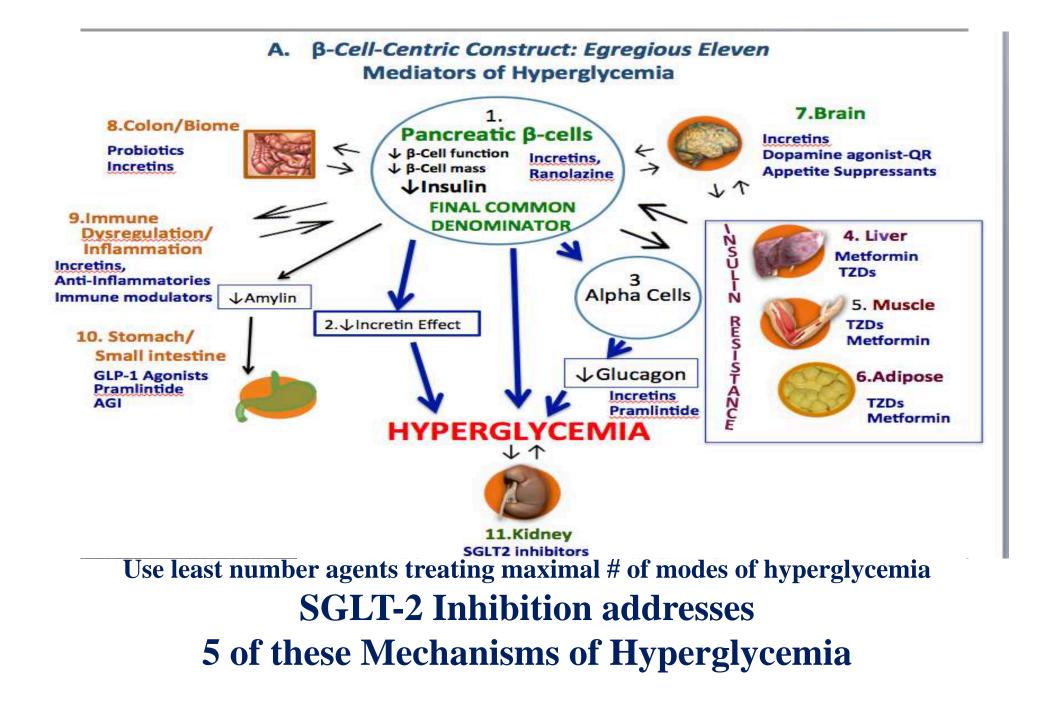
* Inflammation/hypercoagulation

Sympathetic tone
 HPA axis tone
 Hepatic gluconeogenesis
 FFA and TG
 Insulin resistance
 Inflammation/hypercoagulation

Impaired glucose metabolism, hyperglycemia and insulin resistance Adverse cardiovascular pathology

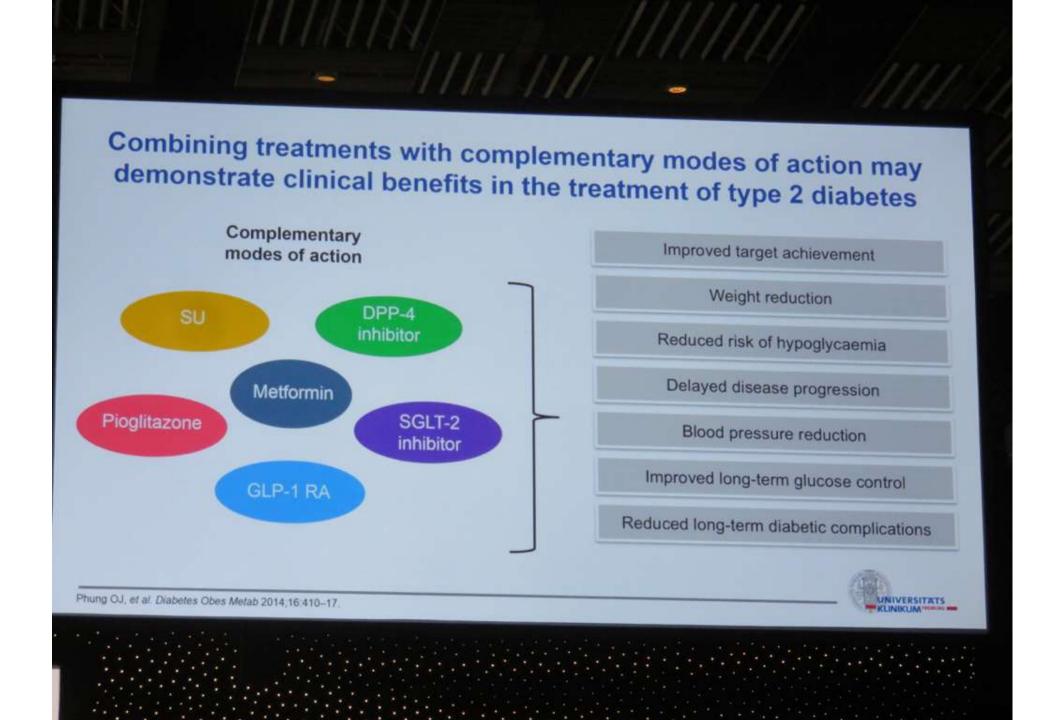
Decreased postprandial glucose levels Reduction in insulin resistance Day-long reduction in plasma glucose, TGs and FFAs

Restoration of morning peak in


dopaminergic activity (via D2

receptor-mediated activity)

Fonseca. Use of Dopamine agonists in Type-2-Diabetes. Oxford American Pocket Cards. OUP, 2010 Cincotta. Hypothalamic role in Insulin Resistance and insulin Resistance Syndrome. Frontiers in Animal Diabetes Research Series. Taylor and Francis, Eds Hansen B Shafrir, E London, pp 271-312, 2002


Therapeutic Logic of SGLT-2 Inhibitors to Fulfill Unmet Needs; Can Tell Patient :

- Effective Glycemic Control with No undue risk for hypoglycemia (unless combined with Insulin or Insulin Secretagogue Therapy) Durable- (2 yr data)
- Reduces HgA1c, Fasting and Postprandial Hyperglycemia[,] variability
- Additive benefits with incretins, esp. GLP-RA's
- Weight Loss, Modest BP reduction
- Minimal GI side effects (with volume depletion)
- No edema,, decreases modest existing edema; decreases/obviates edema of pioglitazone
- Durable long-term glycemic control
- Acceptable side effect profile minimize by quality pro-active care- volume depletion, UTI, yeast infections
- Delay, prevent need for basal insulin; and fast-analog insulin
 - Works with FIRST DOSE- patients love to see QUICK benefit

Three approaches to the Initial Treatment of Type 2 Diabetes Mellitus

Diabetes Self Management Education

(DSME)

What issues/elements need to be

touched in Patient education?

What is DSME ?

The **ongoing process** of facilitating the **knowledge**, **skill**, **and ability** necessary for **diabetes self-care**.

AADE 7 self-care behaviors

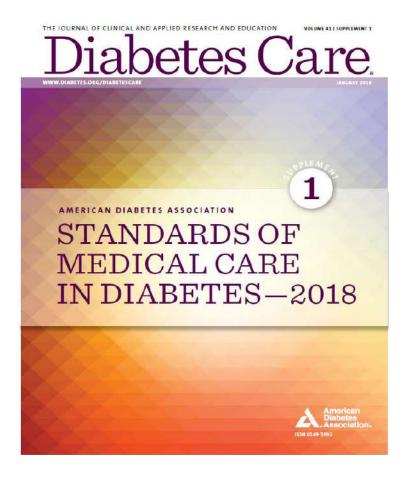
Peros J (2016)DSME program for glycemic control, Integr Obesity Diabetes,, Volume 2(3): 239-244

Diabetes Self-Management Education (DSME)

- DSME teaches life style intervention
- Diabetes education focuses on the Self-Care Behaviors that are essential for improved health status and greater quality of life
 - Healthy Eating
 - Being Active
 - Monitoring
 - Taking Medication
 - Problem Solving
 - Healthy Coping
 - Reducing Risk

Self-Management Education for Adults With Type 2 Diabetes

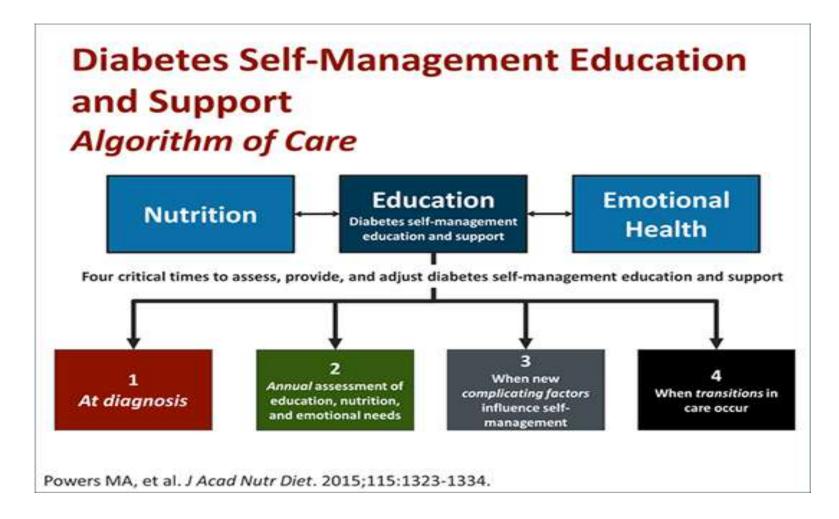
A meta-analysis of the effect on glycemic control

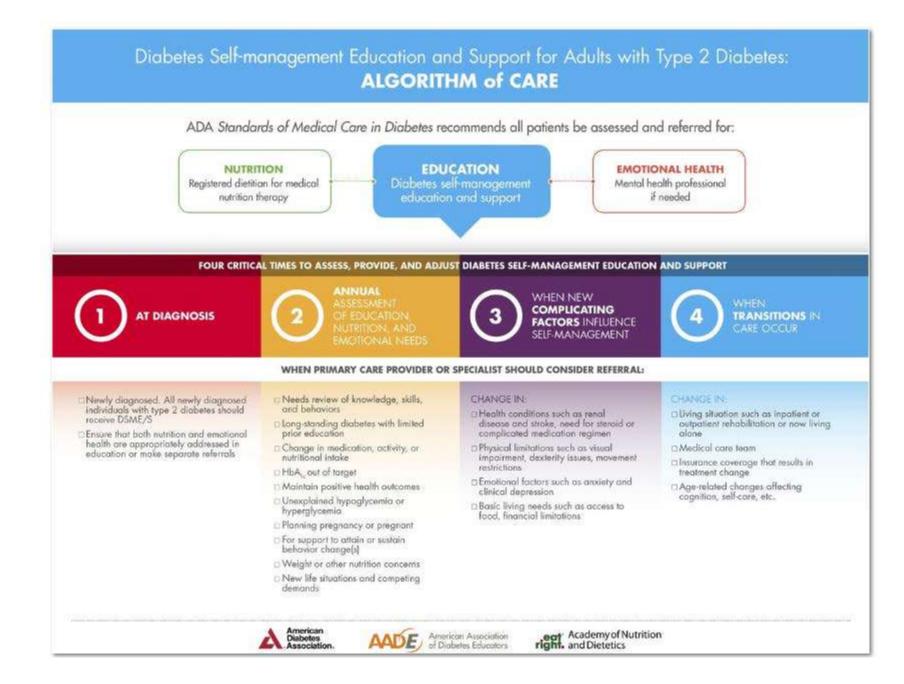

Norris 2002 Diabetes Care 25:1159-1171, 2002

/biomedical engineering

6/25/2014 PAGE 6

Diabetes Self-Management Education and Support: Component of Standard Diabetes Care




"... Ongoing patient selfmanagement education

and support are critical

to preventing acute complications and reducing the risk of longterm complications ..."

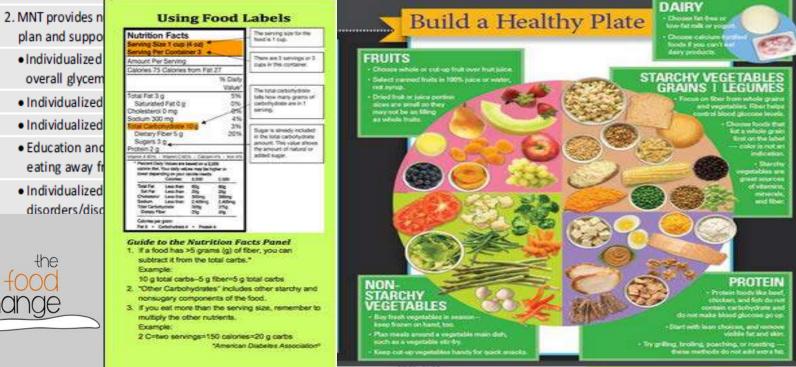
When to deliver DSME

What is Self-Management ?

"The individual's ability to manage the symptoms, treatment, physical and social consequences, and lifestyle changes inherent in living with a chronic illness."

Barlow et al. (2002) Patient Education & Counseling

My diabetes self-management goal



Standards of Medical Care in Diabetes - 2018

Medical Nutrition Therapy

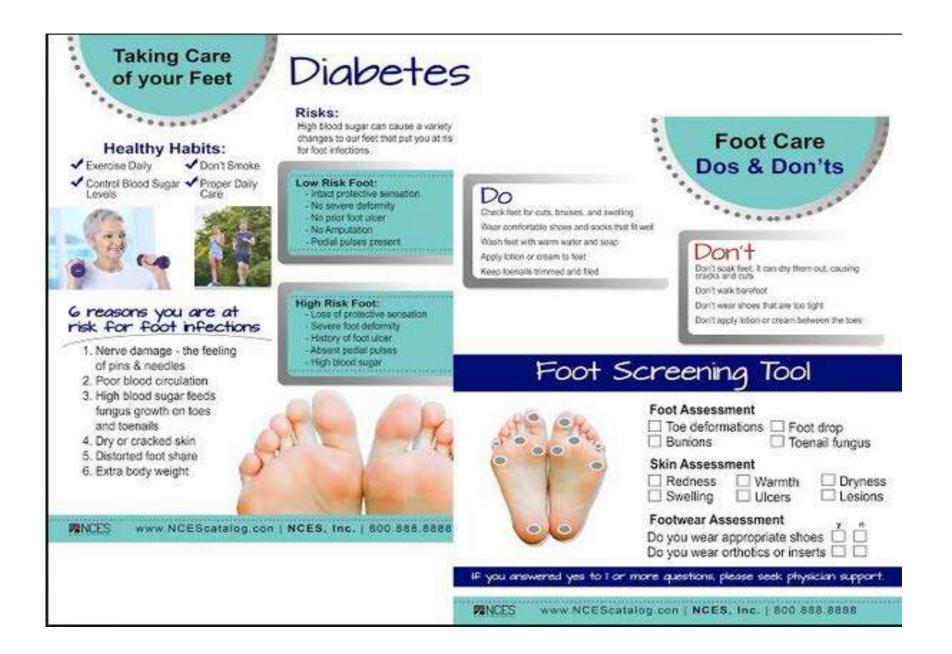
Table 5-Overview of MNT

- MNT is an evidence-based application of the nutrition care process provided by the registered dietitian nutritionist. It inclinutrition assessment, nutrition diagnosis, intervention and monitoring, and evaluation and is the legal definition of nut a registered dietitian nutritionist practicing in the U.S. (8).
- 1. Characteristics of MNT reducing HbA_{1c} by 0.5-2% for type 2 diabetes:
 - Series of three to four encounters with a registered dietitian nutritionist lasting from 45 to 90 min; the registered dietit
 determine if additional encounters are needed
 - Series of encounters should begin at diagnosis of diabetes or at first referral to a registered dietitian nutritionist for N should be completed within 3–6 months
 - At least one follow-up encounter is recommended annually to reinforce lifestyle changes and to evaluate and monitor outcomes that indicate the need for changes in MNT or medication(s)

Standards of Medical Care in Diabetes - 2018

Goals of MNT in those with diabetes

Normal or as near normal as possible glucose, lipids and blood pressure	Prevent or slow down the rate of development of chronic complications	
Address individual	Maintain pleasure	
nutrition needs	of eating by only	
(personal/cultural	limiting food choices	
preferences and	when indicated by	
willingness to change)	scientific evidence	


ADA Position Statement: Nutrition Recommendations and Interventions for Diobetes. Diabetes Care 2008.

Being Active and Exercise

Medication

Scorecard: DSME vs Metformin				
	Benefits Rating			
Criteria	DSME	Metformin		
Efficacy	High	High		
Hypoglycemia risk	Low	Low		
Weight	Neutral/Loss	Neutral/Loss		
Side effects	None	GI		
Cost	Low/Savings	Low		
Psychosocial benefits	High	N/A		

Barriers for Persons with Diabetes

➤Lack of awareness of:

- Risk factors for diabetes.
- Signs and symptoms related to diagnosis.
- Self-care for prevention of complications.
- ➤ Minimal skills for self-management.
- ➤Costs of monitoring equipment & supplies.
- >Lack of support for physical activity and nutrition behaviors.
- ≻Long waits for care.
- ➢ Fatalism and hopelessness.

Jenkins, C, Todd, E. Diabetes. 1997; 46 (Suppl 2), 37A

Barriers for Healthcare Providers

≻ Time

- Disorganized records
- ➤ Too little help
- > Not enough resources
- Reimbursement concerns
- > Office time consumed by acute non-diabetes issues (Episodic Care)
- > Patients inability to understand treatment plan

Jenkins, C, Todd, E. Diabetes. 1997; 46 (Suppl 2), 37A

Systems Barriers

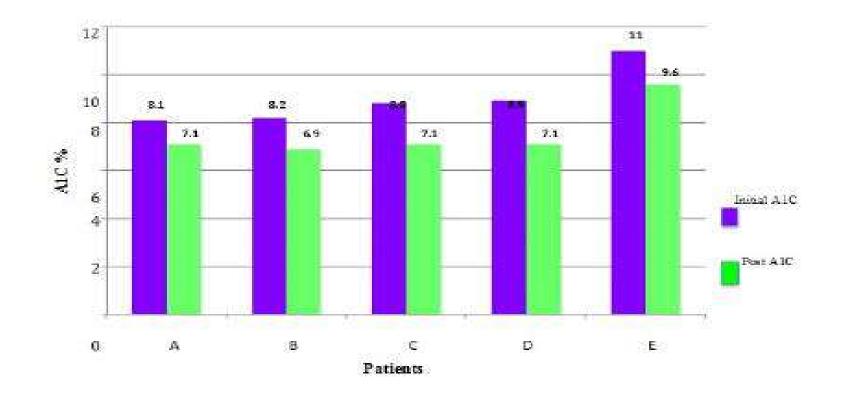
- Lack of diabetes education programs
- > Few materials for low literacy persons
- > Few materials culturally appropriate
- Lack of reimbursement for diabetes care and education.

Jenkins, C, Todd, E. Diabetes. 1997; 46 (Suppl 2), 37A

DIABETES SELF MANAGEMENT

JOA	#		Goal	
1		×	I will exercise to increase my heart rate for at least 30 minutes a day, 5 days a week.	
	2		I will follow my low fat, low salt and low sugar diabetic diet. I will control my portion sizes.	
	3		I will check my blood sugar as directed by my doctors.	
	4		I will complete a lab test to check for my Hemoglobin A1C (HbA1c) levels at least once a year or twice a year and 3 months apart.	
	5		I will complete a lab test to check for my LDL levels at least once a year.	
	6	I will check my feet daily. If I find sores or an irritation, I will go see my doctor.		
	7		I will visit the eye specialist once a year or as suggested by my doctor.	
	8	ECE)	I will see my dentist once a year for a comprehensive exam or as suggested by my doctor.	
	9		I will follow my doctors' instructions and take the medications my doctors prescribe.	
	10	ET E	I will keep my appointments and regularly see my doctor for diabetic management.	
	11	284	I will stop smoking.	

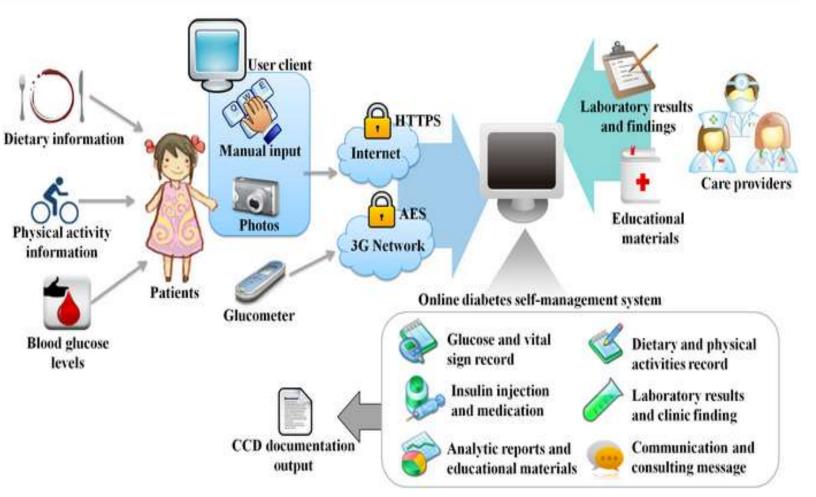
Reducing Risks


- > Hypoglycaemia
- ➤ Hyperglycaemia
- Sick Days
- ≻ CVD
- ➤ Feet
- Eyes (visual chart vs dilated)
- ➢ Kidneys

Benefits Associated with DSME/S

- Improved health outcomes
- Reduced A1c
- Reduced onset and/or advancement of complications
- Reduced hospital admissions and readmissions
- More healthful eating patterns and regular activity
- Enhanced self-efficacy and empowerment
- Increased healthy coping
- Improved quality of life

Impact of Diabetes on Self-Management Education Program on A1C for Glycaemic Control



Recommendations: Diabetes Self-Management Education, Support

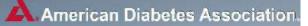
- DSME/DSMS programs are appropriate venues for people with prediabetes to receive education and support to develop and maintain behaviors that can prevent or delay the onset of diabetes C
- Because DSME/DSMS can result in costsavings and improved outcomes B, DSME/DSMS should be adequately reimbursed by third-party payers E

ADA. 4. Foundations of Care. Diabetes Care 2015;38(suppl 1):S20

Updated DSME (2018) (Technology Enable Self Management)

AACE in Practice Jan, 2018

What is SMBG?


Could you elaborate on SMBG?

Method of assessment of glycaemic control

•SMBG – Self-monitoring of blood glucose

•CGM – Continuous glucose monitoring

•HbA1C

SMBG – Self-monitoring of blood glucose

Recommendations

• Patients with intensive insulin regimens

- prior to meals and snacks (3 main meals + 3 snacks total 6 times / day)
- at bedtime,
- occasionally postprandially,
- prior to exercise and critical tasks such as driving
- When suspect and after treating low blood glucose until they are normoglycemic

Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S55-S64

SMBG – Self-monitoring of blood glucose

Recommendations

- T2DM using oral agents and/or basal insulin
 - Insufficient evidence for when and how often SMBG
- T2DM using basal insulin
 - fasting glucose \rightarrow to inform dose adjustments
- <u>T2DM with less intensive insulin therapy</u>
 - more frequent SMBG (e.g., fasting, before/after meals)

Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S55-S64 American SINBG – Self-monitoring of blood

glucose

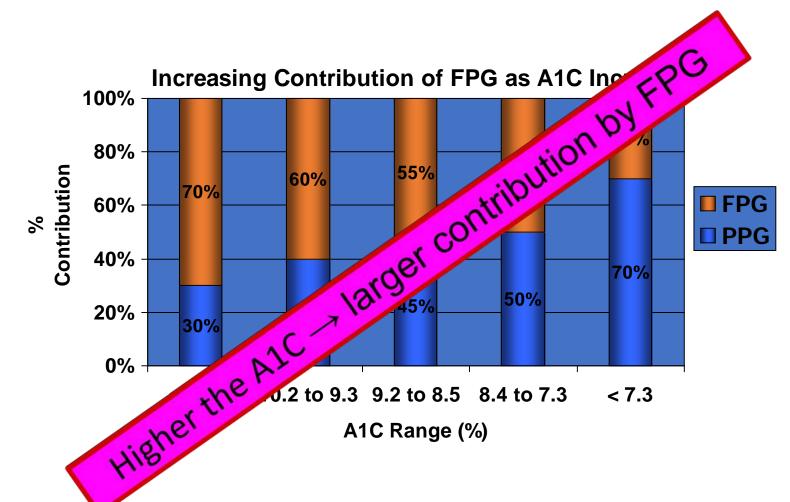
Less frequent insulin injections or non-insulin Rx

- help guide
 - treatment decisions and/or
 - self-management for patients
- SMBG allows patients to
 - evaluate their individual response to therapy and
 - assess whether glycemic targets are being achieved.
- Integrating SMBG results into diabetes management can be a useful tool for
 - guiding medical nutrition therapy and physical activity,
 - preventing hypoglycemia, and
 - adjusting medications (particularly prandial insulin doses)
- Type 1 diabetes,
 - greater SMBG frequency \rightarrow lower A1C

Recommendations

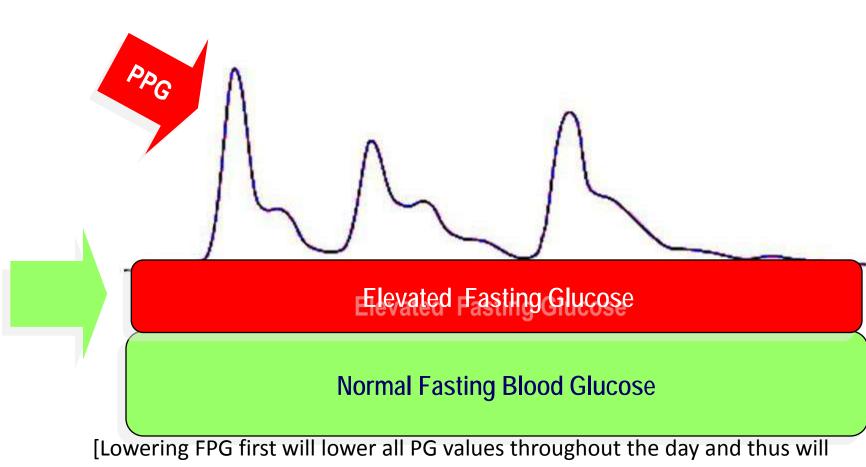
Less frequent insulin injections or non-insulin Rx

- When prescribing SMBG, ensure that
 - patients receive ongoing instruction and
 - regular evaluation of
 - SMBG technique,
 - SMBG results, and
 - their ability to use SMBG data to adjust therapy

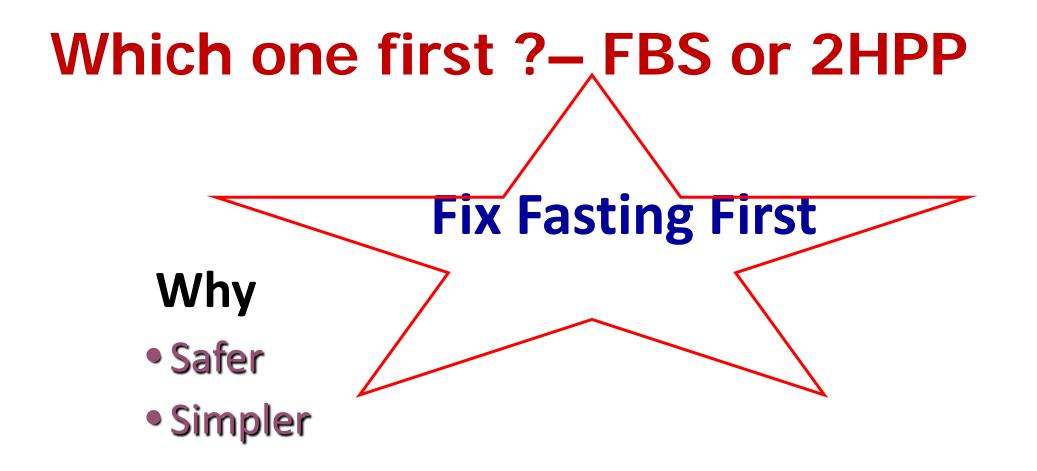

Which one first ?– FBS or 2HPP

- Importance
- Contribution to A1C
- Which one is important?
- FPG -----for microvascular complication
- 2HPP ---- for macrovascular complication (mainly CVS)

Both are important


Contributions of FPG and PPG On Glycosylated Haemoglobin

Ē


Adapted from Monner L, Lapinski H, Collette C. Contributions of fasting and postprandial plasnma glucose increments to the overall diurnal hyper glycemia of Type 2 diabetic patients: variations with increasing levels of HBA(1c). 20180610 - Diabetes Panel Discussion

Fix Fasting First

also reduce PPG and may be sufficient.]

Hence, there is a need to fix the fasting first.

SMBG Summary

- Patient should have well validated Glucometer
- **Regular SMBG** an integral part of DM Management
- Regular recording of SMBG
- Regular reviewing of SMBG by patient and health care provider
- Patients should be taught how to use SMBG data to adjust food intake, exercise, or pharmacologic therapy to achieve specific goals *
- important to monitor for and prevent asymptomatic hypoglycemia and hyperglycemia*
- * To be useful, the information must be integrated into clinical and selfmanagement plans

What are the different set of Glycemic Targets in different settings?

Glycemic Targets for different settings

- 1. Non-pregnant adults
- 2. Pregnancy

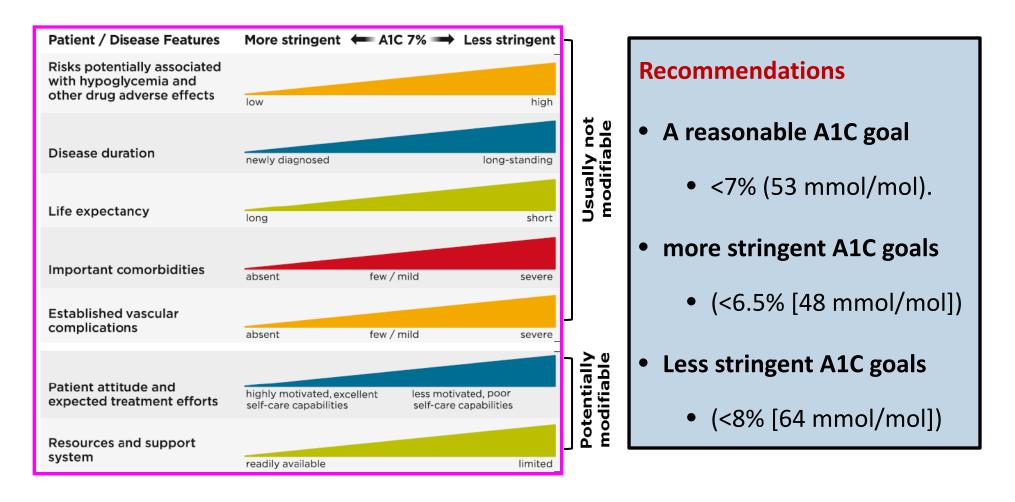
Ę

- 3. In-patient
- 4. Special population
 - Children
 - Elderly

Glycemic Targets for

Non-pregnant adults

Glycemic Recommendations for Non-pregnant Adults with Diabetes


A1C	<7.0%* (<53 mmol/mol)
Preprandial capillary plasma glucose	80–130 mg/dL [*] (4.4–7.2 mmol/L)
Peak postprandial capillary plasma glucose ⁺	<180 mg/dL* (<10.0 mmol/L)

- * Goals should be individualized.
- † Postprandial glucose \rightarrow 1–2 hours after the **beginning of the meal**.
- Postprandial glucose may be targeted if A1C goals are not met despite reaching preprandial glucose goals.
- Preprandial glycemic target 70–130 mg/dL \rightarrow to \rightarrow 80–130 mg/dL (2015 ADA)
- (ADAG Study A1C-Derived Average Glucose Study-2008)
- Raising the lower range of the glycemic target → to limit overtreatment and → provide a safety margin

ADA 2018

More stringent A1C goals (<6.5% [48 mmol/mol])

- [if this can be achieved without significant hypoglycemia or other adverse effects of treatment (i.e., polypharmacy)].
- Appropriate patients might include those with
 - short duration of diabetes,
 - type 2 diabetes treated with lifestyle or metformin only,
 - long life expectancy, or
 - no significant cardiovascular disease.

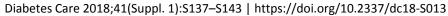
Less stringent A1C goals (such as <8% [64 mmol/mol])

may be **appropriate** for patients with

- a history of severe hypoglycemia,
- limited life expectancy,
- advanced micro- or macrovascular complications,
- extensive comorbid conditions, or
- long-standing diabetes in whom the goal is difficult to achieve

(despite diabetes self-management education, appropriate glucose monitoring, and effective doses of multiple glucose-lowering agents including insulin.)

Mean Glucose Levels for Specified A1C Levels


	Mean Glucose					
	Mean Plasma	Glucose*	Fasting	Premeal	Postmeal	Bedtime
A1C%	mg/dL	mmol/L	mg/dL	mg/dL	mg/dL	mg/dL
6	126	7.0				
<6.5			122	118	144	136
6.5-6.99			142	139	164	153
7	154	8.6				
7.0-7.49			152	152	176	177
7.5-7.99			167	155	189	175
8	183	10.2				
8-8.5			178	179	206	222
9	212	11.8				
10	240	13.4	pro	fessional.c	liabetes.org	/eAG
11	269	14.9				
12	298	16.5				

Glycaemic Targets -(Hypoglycaemia)

Level	Glycemic criteria	Description
Hypoglycaemia alert value (level 1)	≤70 mg/dL (3.9 mmol/L) (~4 mmol/L)	Sufficiently low for treatment with fast- acting carbohydrate and dose adjustment of glucose-lowering therapy
Clinically significant hypoglycemia (level 2)	<54 mg/dL (3.0 mmol/L)	Sufficiently low to indicate serious, clinically important hypoglycemia
Severe hypoglycemia (level 3)	No specific glucose threshold	Hypoglycaemia associated with severe cognitive impairment requiring external assistance for recovery

Glycemic Targets for Pregnancy

GLYCAEMIC targets in pregnancy

Preconception counseling

• Ideally A1C = 6.5% (48 mmol/mol) (to ↓ the risk of congenital anomalies)

GLYCAEMIC targets in pregnancy

	Women with type 1 or type 2 diabetes or Gestational diabetes mellitus (GDM)			
Fasting	≤ 95 mg/dL (5.3 mmol/L) Postprandial monitoring			
1-hr postprandial	\leq 140 mg/dL (7.8 mmol/L)	- associated with better glycemic control and lower risk of		
2-hr postprandial	≤ 120 mg/dL (6.7 mmol/L)	preeclampsia.		
A1C	 6.0 – 6.5 % (42 – 48 mmol/mol) recommended < 6.0% may be optimal if this can be achieved without significant hypoglycaemia Relax <7% (53 mmol/mol) to prevent hypoglycaemia 			

Glycemic Targets for In-patient

ADA 2018

Glycaemic targets for In-Patient

Recommendations

Perform an A1C on all patients with diabetes or hyperglycemia (blood glucose >140 mg/dL) admitted to the hospital if not performed in the prior 3 months.

Insulin - preferred method for diabetes care in the hospital

Recommendations

- Initiate insulin starting at \geq 180 mg/dL (10.0 mmol/L)
- target glucose range 140-180 mg/dL (7.8-10.0 mmol/L)

More stringent goals

• 110 -140 mg/dL (6.1 - 7.8 mmol/L)

•may be appropriate for selected patients, if this can be achieved without significant hypoglycemia.

Higher glucose ranges may be acceptable in terminally ill patients, in patients with severe comorbidities, and in inpatient care settings where frequent glucose monitoring or close nursing supervision is not feasible.

Peri-operative Target – 80 -180 mg/dL (4.4-10.0 mmol/L) Diabetes Care 2018;41(Suppl. 1):S137–S143 | https://doi.org/10.2337/dc18-S013

Consider a risk-benefit assessment, including hypoglycemia
risk, when individualizing glycemic targets

A1C target	■<7.5% (58 mmol/mol) – for all
	<7.0% - reasonable if it can be
	achieved without excessive
	hypoglycemia
Plasma glucose (preprandial)	90-130 mg/dL(5.0-7.2 mmol/L)
Plasma glucose at bedtime	90-150 mg/dL (5.0-8.3 mmol/L)
and overnight	

Status	Rationale	Reasonable A1C goal‡	Fasting or preprandial glucose	Bedtime glucose
Healthy (few coexisting chronic illnesses, intact cognitive and functional status)	Longer remaining life expectancy	<7.5% (58 mmol/mol)	90–130 mg/dL (5.0–7.2 mmol/L)	90–150 mg/dL (5.0–8.3 mmol/L)

Coexisting chronic illnesses

conditions serious enough to require medications or lifestyle management
 include arthritis, cancer, congestive heart failure, depression, emphysema, falls, hypertension, incontinence, stage 3 or worse chronic kidney disease, myocardial infarction, and stroke.

Status	Rationale	Reasonable A1C goal‡	Fasting or preprandial glucose	Bedtime glucose
Complex/ intermediate (multiple coexisting chronic illnesses* or 2+ instrumental ADL impairments or mild-to moderate Cognitive Impairment)	Intermediate remaining life expectancy, high treatment burden, hypoglycemia vulnerability, fall risk	< 8.0% (64 mmol/mol)	90–150 mg/dL (5.0–8.3 mmol/L)	100–180 mg/dL (5.6–10.0 mmol/L

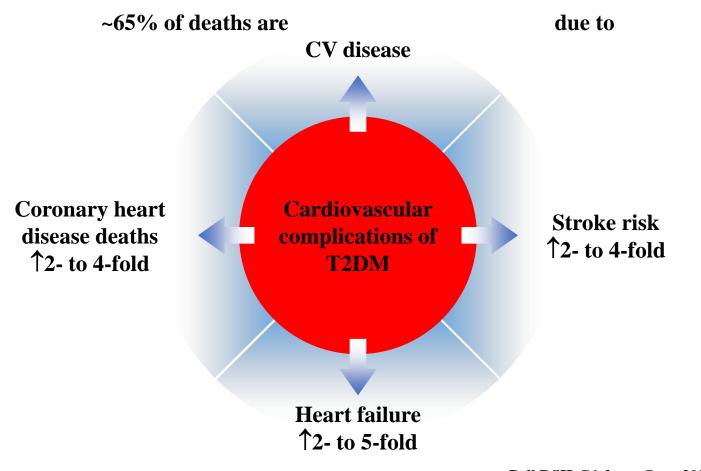
*"multiple," - mean at least three, but many patients may have five or more ADL – Activities of Daily living

Status	Rationale	Reasonable A1C goal‡	Fasting or preprandial glucose	Bedtime glucose
Very complex/poor health (LTC or end-stage chronic illnesses** or moderate-to-severe cognitive impairment or 2+ ADL dependencies)	Limited remaining life expectancy makes benefit uncertain	< 8.5%† (69 mmol/mol)	100–180 mg/dL (5.6–10.0 mmol/L)	110–200 mg/dL (6.1–11.1 mmol/L)

**The presence of a single end-stage chronic illness, such as stage 3–4 CCF or oxygendependent lung disease, CKD requiring dialysis, or uncontrolled metastatic cancer, may cause significant symptoms or impairment of functional status and significantly reduce life expectancy.

Status	Rationale	Reasona ble A1C goal‡	Fasting or preprandial glucose	Bedtime glucose
Healthy	Longer remaining life expectancy	<7.5% (58 mmol/mol)	90–130 mg/dL (5.0–7.2 mmol/L)	90–150 mg/dL (5.0–8.3 mmol/L)
Complex/ intermediate	Intermediate remaining life expectancy,	< 8.0% (64 mmol/mol)	90–150 mg/dL (5.0–8.3 mmol/L)	100–180 mg/dL (5.6–10.0 mmol/L
Very complex /poor health	Limited remaining life expectancy	< 8.5%† (69 mmol/mol)	100–180 mg/dL (5.6–10.0 mmol/L)	110–200 mg/dL (6.1–11.1 mmol/L)

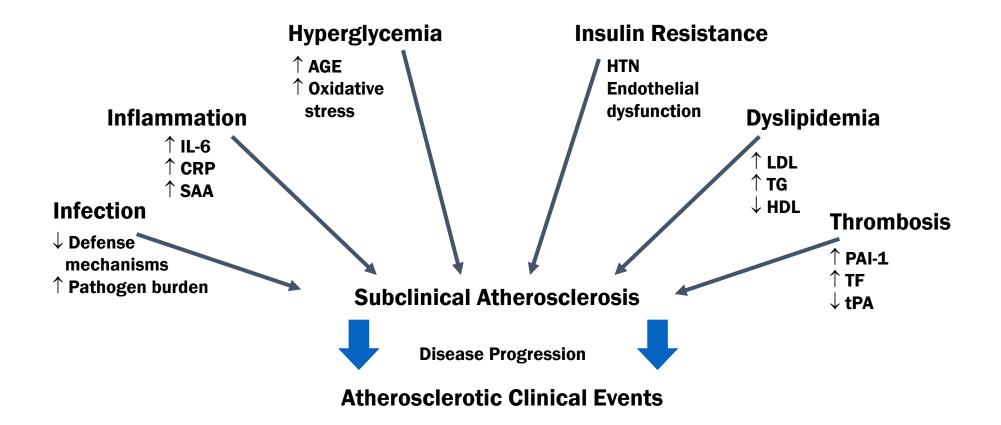
- What are the main unique features of 2018 ADA Guideline?
- ➢What are the findings of CVOT on GLP1-RA, SGL2 i, DPP4 i?


Feasibility of new 2018 ADA Guideline in Myanmar? What is your suggestion?

Macrovascular disease in diabetes

- The main cause of death in type 1 and type 2 diabetes
- Excess mortality is seen in all age groups, especially the young
- Premenopausal women lose their protection against macrovascular disease
- Disease is diffuse, distal, and affects many vessels
- **Reocclusion and reinfarction** rates are higher after thrombolysis
- **Restenosis** rates are higher after angioplasty, although drug eluting stenting may help
- Five year survival after coronary artery bypass grafting is lower than in non-diabetic patients

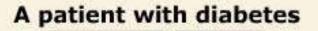
Cardiovascular disease and diabetes


Ę

Bell DSH. *Diabetes Care*. 2003;26:2433-41. Centers for Disease Control (CDC). www.cdc.gov.

Mechanisms by which Diabetes Mellitus Leads to Coronary Heart Disease

Ę



AGE=Advanced glycation end products, CRP=C-reactive protein, CHD=Coronary heart disease HDL=High-density lipoprotein, HTN=Hypertension, IL-6=Interleukin-6, LDL=Low-density lipoprotein, PAI-1=Plasminogen activator inhibitor-1, SAA=Serum amyloid A protein, TF=Tissue factor, TG=Triglycerides, tPA=Tissue plasminogen activator

Source: Biondi-Zoccai GGL et al. JACC 2003;41:1071-1077

Cardiometabolic Risk

Normal person with MI

Consider yourself having a heart attack already, when you develop diabetes

 \sim

Strategies

Good glycaemic control(Early treatment)

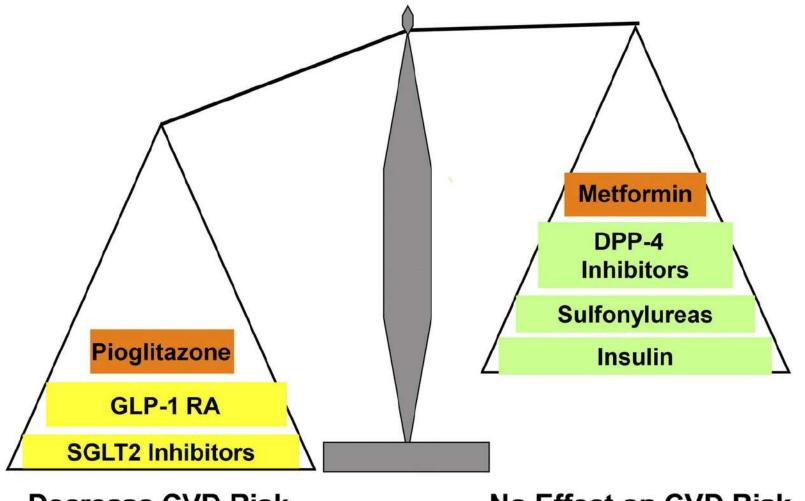
To use drugs which reduce CV mortality or cardiovascular safe)

GLP1 agonist and SGLT2 inhibitors(reduce CVD motality)

Metformin and DPP4 inhibitors –CVD safe

- Treatment of Hypertension
- Reductions of Lipids
- Smoking cessation
- Obesity reduction

Glucose Control and CV reduction


STUDY	Duration of DM at inclusion for tight control	CV REDUCTION
UKPDS 20 year f/u	New	Yes
ACCORD	10 Yrs	Increase
VADT		No

Metabolic Memory: The Legacy

Early vs late glycaemic intervention: UKPDS enrolled newly diagnosed patients

	UKPDS ¹ (n=3867)	ADVANCE ² (n=11,140)	ACCORD ³ (n=10,251)	VADT ⁴ (n=1791)
			Disease pro	ogression
Duration of diabetes (years)	0*	8	10	11.5
Mean baseline HbA _{1c} (%)	7.1	7.5	8.3	9.4
Mean baseline FPG (mmol/L)	8.0	8.5	9.7	11.4
Mean age (years)	53	66	62	60

Not all antidiabetes agents are equal in their ability to reduce cardiovascular risk.

Decrease CVD Risk

No Effect on CVD Risk

Muhammad Abdul-Ghani, and Ralph A. DeFronzo Dia Care 2017;40:1121-1127

Start with Monotherapy unless:

ADA 2017

AIC is greater than or equal to 9%, consider Dual Therapy.

A1C is greater than or equal to 10%, blood glucose is greater than or equal to 300 mg/dL, or patient is markedly symptomatic, **consider Combination Injectable Therapy** (See Figure 8.2).

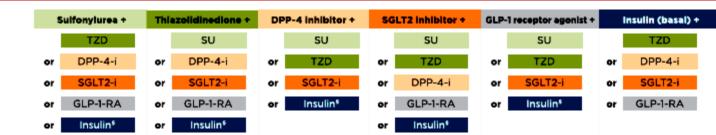
Monotherapy Metformin

Lifesty	A M 3	ment
		THE IT IS

EFFICACY"	high
HYPO RISK	low risk
WEIGHT	neutral/loss
SIDE EFFECTS	GI/lactic acidosis
COSTS*	low

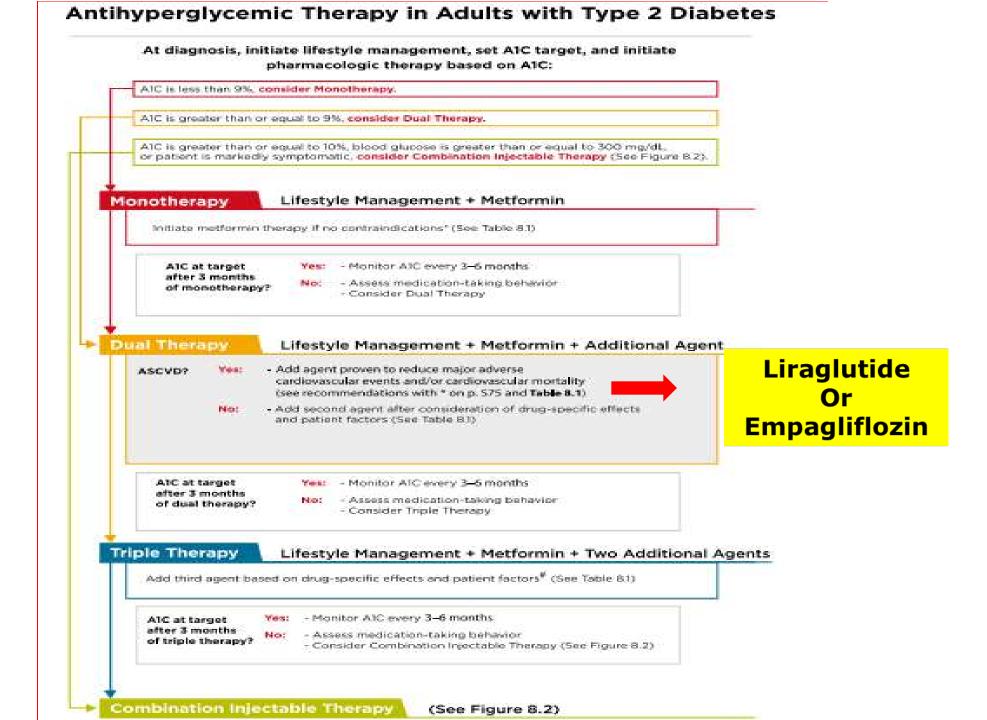
If AIC target not achieved after approximately 3 months of monotherapy, proceed to 2-drug combination (order not meant to denote any specific preference — choice dependent on a variety of patient- & disease-specific factors):

Dual Therapy Metformin +


Lifestyle Management

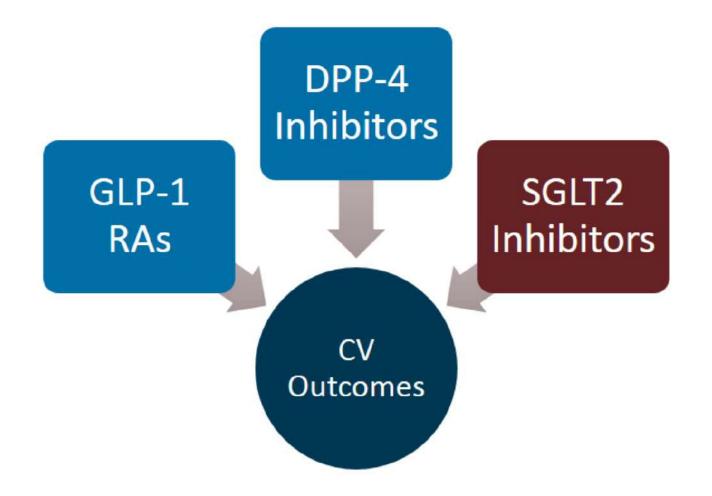
	Sulfonylurea	Thiszolidinedione	DPP-4 inhibitor	SGLT2 inhibitor	GLP-1 receptor agonist	Insulin (basal)
EFFICACY*	high	high	intermediate	intermediate	high	highest
HYPO RISK	moderate risk	low risk	low risk	low risk	low risk	high risk
WEIGHT	gain	gain	neutral	loss	loss	gain
SIDE EFFECTS	hypoglycemia	edema, HF, fxs	rare	GU, dehydration, fxs	GI	hypoglycemia
COSTS*	low	low	high	high	high	high

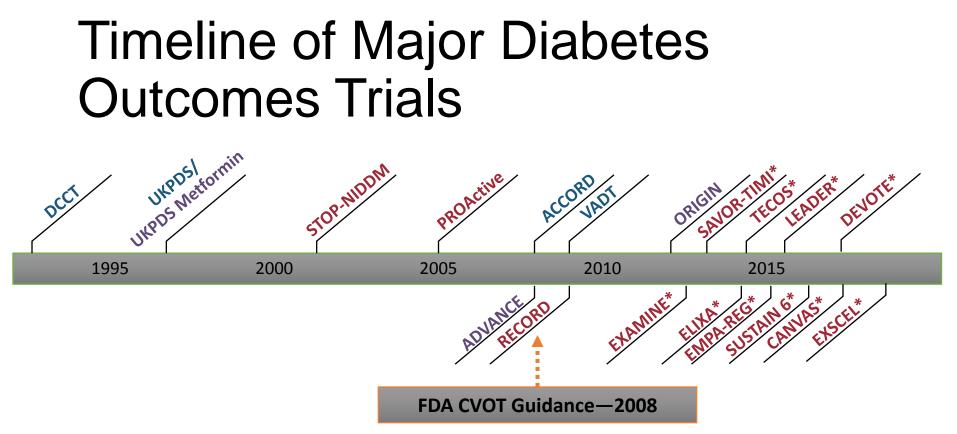
If A1C target not achieved after approximately 3 months of dual therapy, proceed to 3-drug combination (order not meant to denote any specific preference — choice dependent on a variety of patient- & disease-specific factors):


Triple Therapy Metformin +

Lifestyle Management

If AIC target not achieved after approximately 3 months of triple therapy and patient (1) on oral combination, move to basal insulin or GLP-1 RA, (2) on GLP-1 RA, add basal insulin, or (3) on optimally titrated basal insulin, add GLP-1 RA or mealtime insulin. Metformin therapy should be maintained, while other oral agents may be discontinued on an individual basis to avoid unnecessarily complex or costly regimens (i.e., adding a fourth antihyperglycemic agent).


Combination Injectable Therapy 2017(See 5-ig/ul 4/8.72) an Hlyin


	Efficace"	Hypoglycomia	Weight	CV EI	ects	Gitt	004/50	Renal Effects		Additions) Considerations					
			Olarge	ANDRO	644		and M	Progression of DKD	Dooragible considerations	Additional Considerations					
Verformin	1000	No	Sington (Persential Sor Macheet Lane)	Posential Sisterit	Natural	ine	Chal	Notes	 Contraindicated with eGPR<38 	Gastromissional adde effects-com blambox newsol Potential for #12 deficiency					
SGLT-2 Infiliant	Latoren Barn	No	(m)	Noresti caracylificets empagilitety*	Besett sanagifkets, empagifkon	HU)	CHA	Denetii coogeface, engegeface	Caracythodn reit noornewenhet with 07.5 ×0: Dapageflocts reit noornewenhet with n07.5 ×0: researchilisatet with n07.5 ×0: Tepper/Noirn nornewenhet with n07.5 ×0: Dapageflocts nornewenhet with n07.5 ×0: Dapageflocts nornewenhet with n07.5 ×0: Dapageflocts	 PDA. Black Speci Test of any statistic scenage Process Rate of scena generations because photons Rate of scena generations are in T20AM Dock rate full agentia, sees in t20AM 					
01.9-1 649	Ant Real	.Ho	Lani	Awatel Deleration, executed externated relace	Anoral .	Hgi	30	loverz kaglote	Dematide; not indicated with oCPB <00 Usionalide: cauton with wCPB <20 Ecosed Six pl dde	FDA Diack Box: First of the rold C-coll terriors (Imaginitide; al bigg stiller, do ing initials, econotide actaneded released					
			Bonafit Doglaðste [†]					effects in patients with sead expansion	Gastroniniastinal side offects common passes, vaniling, dames; lighted; Vectorate stations Vector panoresitis size						
DPD-4 leftilities	. Internation	No	Newton	Terrat	Potensol Fisk saragligtin, altigligtin	itiyi	ભા	Nextee	 Renal does adjustment regularization be used in sevel impairment 	Robert M Halk of acade parametris John pain					
Nandoedice:	199	No	Game	Potential Sensity allocations	Fernand Rule	194	over()	No.ret	We dose adjustment, regulated Generally not successed in renal impairment due to polential for &uid remainion	PDA Black See: Congretive heart follow (plog Basene, molgiliseene) Puid retextice tedema, trant followi Seenit in MASH Bick of toors (natures Bader cancer (plog Hasere) Hubber cancer (plog Hasere)					
Sa Bergdamas (Ded Ganagation)	ingk	*	tan.	Nextol	inputsal	3.pe	oel	tieuzol	Outputtien not experimented Outputtien du dimensionale indicate concensation y to accord happing pocente	Or famile Weing an extend of orference for monthly board or challen of an alter after president for standard					
Installiny Plantant Front In	Highwe.	Wa	Gain	Neurol	haani	i.ev		20	90	e 90	inquired with			 Lowerranalis down, inquired with a documan in eCFR titlete 	Prjection via mections Higher risk of typoglycentia with byten, itsal / RVH or permited
and age						1940	- 56	1	decrease in eGPR, titlete per circcal regiones	formulational vs. analoga					

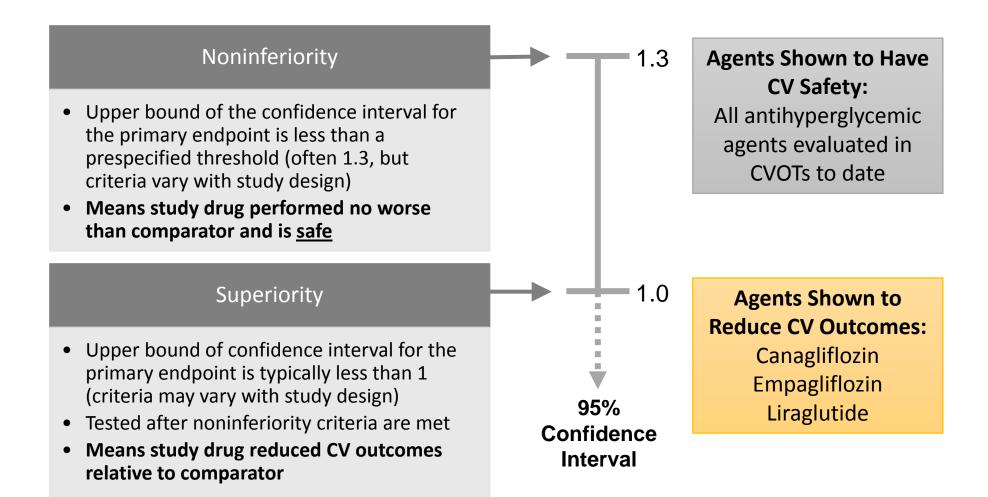
*See ref. 31 for description of efficacy. #DA approved for CVD benefit. CVD, cardiovascular disease; DKA, diabetic ketoadidosk; DKD, diabetic kidney disease; N/SH, nonak choic steatohepatitis; RAs, receptor agonis to; SQ, suboutaneous; T2DM, type 2 diabetes.

CVOTs With Glucose-Lowering Agents

Cheng JWM, et al. Curr Med Res Opin. 2017;33:985-992.

- **Blue** = Intensive vs standard control using same set of glucose-lowering agent(s)
- **Purple** = Intensive control with a specific agent vs standard care
- **Red** = Placebo- or active-controlled study
- * = FDA-mandated cardiovascular safety trial

ACCORD, Action to Control Cardiovascular Risk in Diabetes; ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation; CANVAS, Canagliflozin Cardiovascular Assessment Study; DCCT, Diabetes Control and Complications Trial; DEVOTE, Trial Comparing Cardiovascular Safety of Insulin Degludec versus Insulin Glargine in Patients with Type 2 Diabetes at High Risk of Cardiovascular Events; EXAMINE, Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care; ELIXA, Evaluation of Lixisenatide in Acute Coronary Syndrome; EMPA-REG, EMPA-REG OUTCOME trial; Exenatide Study of Cardiovascular Event Lowering; LEADER, Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; ORIGIN, Outcome Reduction with an Initial Glargine Intervention; PROActive, Prospective Pioglitazone Clinical Trial in Macrovascular Events; RECORD, Rosiglitazone Evaluated for Cardiovascular Outcomes in Oral Agent Combination Therapy for Type 2 Diabetes; SAVOR-TIMI, Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus–Thrombolysis in Myocardial Infarction; STOP-NIDDM, Study to Prevent Non-Insulin-Dependent Diabetes Mellitus; SUSTAIN, Trial to Evaluate Cardiovascular and Other Long-Term Outcomes with Semaglutide in Subjects with Type 2 Diabetes; TECOS, Trial Evaluating Cardiovascular Outcomes with Sitagliptin; UKPDS, United Kingdom Prospective Diabetes Study; VADT, Veterans Affairs Diabetes Trial.


Cardiovascular Outcomes Trials: A Brief History

- 2008 FDA guidance mandating assessment of CV safety of all antihyperglycemic agents in RCTs
 - Designed as noninferiority studies to demonstrate study drug was not associated with more MACE than placebo
 - Some study designs tested for superiority if noninferiority criteria were met
 - Primary endpoint: composite of cardiovascular death, nonfatal MI, and nonfatal stroke
 - Some primary endpoints included additional components

MACE = major adverse cardiovascular events; RCTs, randomized controlled trials.

FDA. Guidance for industry: evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf.

Noninferiority and Superiority Criteria in CVOTs

CV Improvements and Novel Glucose-Lowering Agents

The CV and renal benefits observed with long-acting GLP-1 RAs and SGLT2 inhibitors may be the result of an entire milieu of improvements, eg,

- HbA1c reduction
- Improvements in insulin resistance
- Weight loss
- Blood pressure reduction
- Improvements in lipids
- Improvements in CV function

GLP-1 RAs and Cardiac Function

- Treatment with GLP-1 RAs has been associated with SBP reduction.
 Potential mechanisms include vasodilation and natriuresis^[a]
- Treatment with liraglutide 1.2 or 1.8 mg/day has reduced SBP, ranging from 2.1 to 6.7 mmHg among across LEAD studies^[a]
- The decrease in SBP appears to be independent of weight loss and occurs before weight loss^[a]
- In a hypertensive and heart failure-prone rat, GLP-1 improved survival and preserved left ventricular function^[b]
- Liraglutide decreased left ventricular structural remodeling and improved cardiac output in mice after occlusion of the left anterior descending coronary artery^[c]
 - Similar results have been shown for the GLP-1 analogue, exenatide^[d]

a. Lorber D. Cardiovasc Ther. 2013;31:238-249.

b. Poornima I, et al. Circ Heart Fail. 2008;1:153-160.

c. Noyan-Ashraf, MH, et al. Diabetes. 2009;58:975-983.

d. Liu et al. Cardiovascular Diabetology 2010;9:76.

CVOTs With GLP-1 RAs (cont)

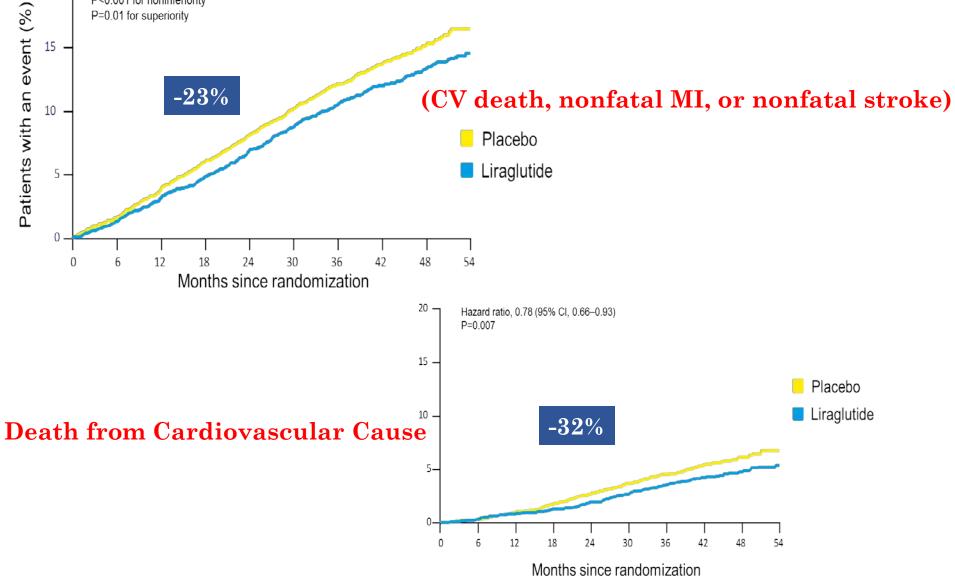
сvот	Agent	Established CV Safety	Demonstrated Beneficial Effects on CV Endpoints
LEADER ^[a]	Liraglutide	Yes	Yes
ELIXA ^[b]	Lixisenatide	Yes	No
SUSTAIN-6 ^[c]	Semaglutide	Yes	Yes
EXSCEL ^[d]	Exenatide once weekly	Yes	No

a. Marso SP, et al. *N Engl J Med*. 2016;372:311-322. b. Pfeffer MA, et al. *N Engl J Med*. 2015;33:2247-2257. c. Marso SP, et al. *N Engl J Med*. 2016;375:1834-1844. d. AstraZeneca website, 2017. Primary safety objective.

Do Differences in GLP-1 RA Half-Life Explain Differences in Clinical Outcomes?

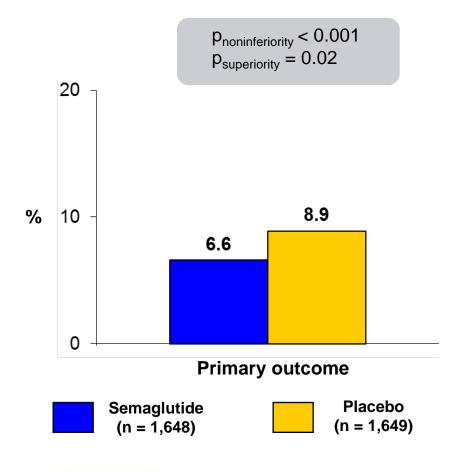
Agent	Half-Life ^[a]	СVОТ	Primary Outcome Measure	Primary Outcome Result
Lixisenatide	3-4 h	ELIXA ^[b]	Composite of CV death, nonfatal MI, nonfatal stroke, or hospitalization for UA	HR 1.02; 95% CI: 0.89,1.17
Liraglutide	13 h	LEADER ^[c]	Composite of CV death, nonfatal MI, or nonfatal stroke	HR 0.87; 95% CI: 0.78, 0.97 <i>P</i> < .001 for noninferiority <i>P</i> = .01 for superiority
Semaglutide	165-184 h	SUSTAIN-6 ^[d]	Composite of CV death, nonfatal MI, or nonfatal stroke	HR 0.74; 95% CI: 0.58,0.95 <i>P</i> < .001 for noninferiority <i>P</i> = .02 for superiority
Exenatide once weekly	4.7 days	EXSCEL [e]	Composite of CV death, nonfatal MI, or nonfatal stroke	P = NS for superiority

a. Dalsgaard NB, et al. Expert Opin Drug Saf. 2017;16:351-363.


b. Pfeffer MA, et al. N Engl J Med. 2015;33:2247-2257.

c. Marso SP, et al. N Engl J Med. 2016;372:311-322.

d. Marso SP, et al. N Engl J Med. 2016;375:1834-1844.


e. AstraZeneca website, 2017. Primary safety objective.

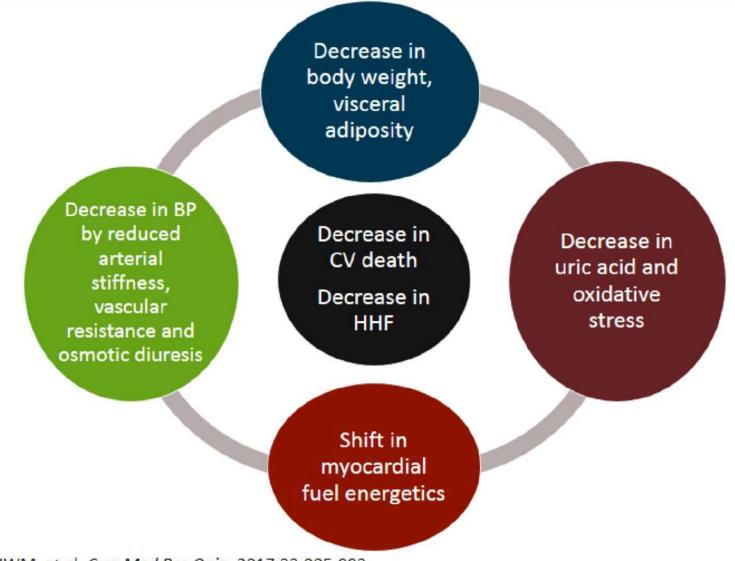
LEADER(Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results)

SUSTAIN-6(Semaglutide in Subject with Type2 diabetes

Trial design: Patients with DM2 at high risk for CV events were randomized in a 1:1:1:1 fashion to either semaglutide 0.5 mg, semaglutide 1 mg, or matching placebo. They were followed for a median of 2.1 years.

www.acc.org

Results

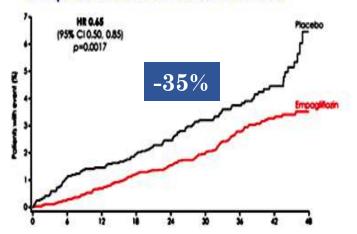

- Primary outcome, CV death/MI/stroke: semaglutide vs. placebo: 6.6% vs. 8.9%, HR 0.74, 95% CI 0.58-0.95, p < 0.001 for noninferiority; p = 0.02 for superiority
- CV death: 2.7% vs. 2.8%, p = 0.92; all MI: 2.9% vs. 3.9%, p = 0.12; all stroke: 1.6% vs. 2.7%, p = 0.04
- HbA1c at week 104: 7.6% vs. 7.3% vs. 8.3%

Conclusions

- There is also a significant reduction in stroke and new or worsening nephropathy with semaglutide, perhaps related to a concomitant reduction in BP, and also a reduction in body weight

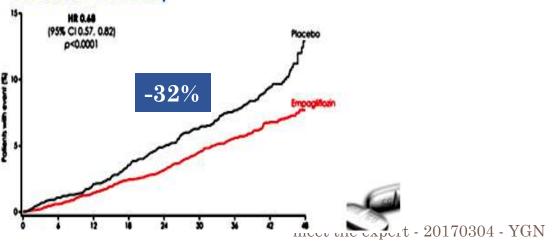
Marso SP, et al. N Engl J Med 2016;375:1834-44

Potential Mechanisms of SGLT2 Inhibitors Resulting in CV Outcomes

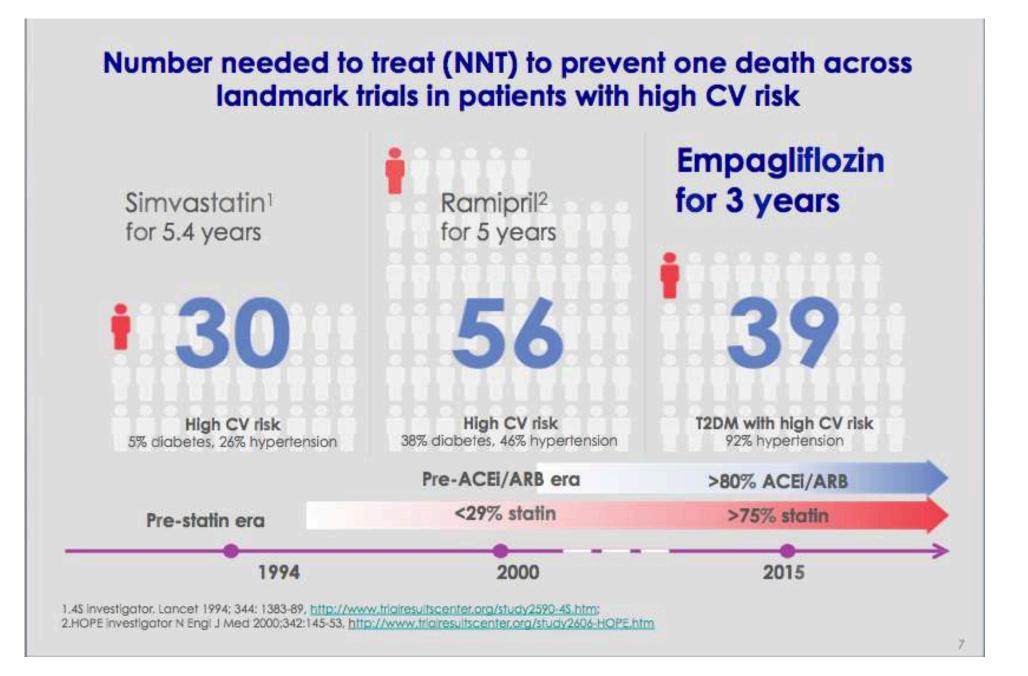

Cheng JWM, et al. Curr Med Res Opin. 2017;33:985-992.

EMPA-REG - CV Outcomes

Primary outcome: 3-point MACE


HR 0.42 (95% C10.49, 0.77) p<0.0001-38% tmpoglituen

Hospitalization for heart failure


All-cause mortality

CV Death

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes (CANVAS)

Outcome	Canagliflozin (N=5795)	Placebo (N=4347)	Hazard	Ratio (95% CI)
no.	of participants p	er 1000 patie	nt-yr	
Death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke	26.9	31.5	⊢ ●	0.86 (0.75–0.97)
Death from cardiovascular causes	11.6	12.8	⊢ ●	0.87 (0.72-1.06)
Nonfatal myocardial infarction	9.7	11.6	⊢ ● <u>+</u> 1	0.85 (0.69–1.05)
Nonfatal stroke	7.1	8.4	⊢ ●	0.90 (0.71-1.15)
Fatal or nonfatal myocardial infarction	11.2	12.6	⊢ ● <u>+</u> 1	0.89 (0.73-1.09)
Fatal or nonfatal stroke	7.9	9.6		0.87 (0.69-1.09)
Hospitalization for any cause	118.7	131.1	Her	0.94 (0.88-1.00)
Hospitalization for heart failure	5.5	8.7		0.67 (0.52-0.87)
Death from cardiovascular causes or hospitalization for heart failure	16.3	20.8	⊢●1	0.78 (0.67–0.91)
Death from any cause	17.3	19.5	⊢● →	0.87 (0.74-1.01)
Progression of albuminuria	89.4	128.7	H	0.73 (0.67–0.79)
40% reduction in eGFR, renal-replacement therapy, or renal death	ent 5.5	9.0		0.60 (0.47–0.77)
			0.5 1.0	2.0
			Canagliflozin Better Pla	cebo Better

SAVOR-TIMI, EXAMINE, TECOS: Primary Outcome Measure

No CV benefit vs placebo observed with either saxagliptin, alogliptin, or sitagliptin^[a-c]

суот	Agent	Primary Endpoint	HR (95% CI)
SAVOR-TIMI 53 ^[a]	Saxagliptin	CV death, nonfatal MI, or nonfatal stroke	1.00 (0.89, 1.12) P = .99
EXAMINE ^[b]	Alogliptin	CV death, nonfatal MI, or nonfatal stroke	0.96 (upper boundary of 1-sided repeated CI: 1.16) P = .315
TECOS[c]	Sitagliptin	CV death, nonfatal MI, or nonfatal stroke CV death, nonfatal MI, nonfatal stroke, or UA requiring hospitalization	0.99 (0.89, 1.10) <i>P</i> = .84 (superiority) 0.98 (0.88, 1.09) <i>P</i> = .645 (superiority)

a. Scirica BM, et al. *N Engl J Med*. 2013;369:1317-1326. b. White W, et al. *N Engl J Med*. 2013;369:1327-1335. c. Green JB, et al. *N Engl J Med*. 2015;373:232-242.

Guidelines' Changes as a Result of CV Outcomes Trial Findings

Changes to NICE guidelines May 2017^[a]

- SGLT2 inhibitors are listed much more prominently as second-line therapy options, along with DPP-4 inhibitors, pioglitazone, or SUs to be used on treatment intensification when HbA1c rises above 7.5% on metformin. They are also listed prominently for use in triple therapy once HbA1c rises above 7.5% on dual therapy
- In addition, SGLT2 inhibitors can be considered as a first-line therapy option if metformin is contraindicated or cannot be tolerated and "a sulfonylurea or pioglitazone is not appropriate"

Changes to Canadian Diabetes Association Guidelines^[b]

 GLP-1 RAs added to medications' list to be prescribed second line after monotherapy with metformin

ADA 2018, if ASCVD (+) next to metformin is liraglutide or Empagliflozin

- a. NICE website. Type 2 Diabetes in Adults: Management.
- b. Canadian Diabetes Association website. Guidelines.

Old(Met/SU/Pioz) or New?(GLP1 /SGLT2 inhibitors/DPP4 inhibitors)

www.shutterstock.com 131891831

More from ADA				Instituti	ion: Myanmar:	ADA Sponsored	l Subscribe Log in Mana	ge Online Access 🔲 🔲
	American Diabetes	Di	h	oetes	C_{c}	ro	Looking for something	? fl Advanced Search
4.	Associatio	on。レJ	al	eles	Uc	ITC"		Auvanceu Search
Home	Current	Browse	Info	Subscriptions	Alerts	Podcasts	Submit	
Charge Car Suppliers							Diabetes Care	Current Issue
		the T	reat	ment Pa	aradig	sm for	Type 2 Di	
Silvio E. Inzucch								About the Cover Index by Author
+ Author Affilia								Masthead (PDF)
i	author: Silvio E. In		- 2					
Diabetes Care 2	017 Aug; 40(8): 1	1128-1132, nttp	s://doi.org/1	0.2337/dc16-2372			Search this issue	fl
Previous						Next 🔲	Sign up to receive current	issue alerts
	Figures & Tables	Info & Metrics	ž			Next	Sign up to receive current	issue alerts
	igures & Tables	Info & Metrics	5				Sign up to receive current	issue alerts □ Share

How much have to spend to Reduce 1%Hba1c in Australia

Drug class and agent #	Cost/day (AUD) per 1% \downarrow in HbA1c *
Sulfonylureas	0.95 (938 Kyats)
TZD (Pioglitazone)	0.83 <mark>(813 Kyats)</mark>
SGLT2 (Empagliflozin)	2.53 (2,477 Kyats)
DPP4i (Sitagliptin)	2.70 (2,643 Kyats)
GLP 1(Exenatide LAR)	3.07 (3,005 Kyats)
GLP 1 (Liraglutide)	5.11 (5,002 Kyats)
Insulin (NPH)	0.56 <mark>(548 Kyats)</mark>
Insulin (Glargine)	1.33 (1,302 Kyats)

20170107 - MMA GP YGN

Australian published product information, * Yki-Jarvinen H et al. Diabetes Care 23:1130-1136, 2000 (Insulin dose 23 units/day)

Costs of diabetes care have dramatically increased

Between 1987 and 2011,

- per person medical spending attributable to diabetes ${f X}~2$
- \geq 50% of the increase was due to prescription drug

Myanmar Guideline(2018)

Treatment Algorithm (Table)

HbA1c < 9% - Consider Monotherapy Metformin

Not well controlled (After 3 months)

Metformin + SU or

Metformin + TZD or

HbA1c(9-10)

Metformin + DPP4 Inhibitor or

Metformin + SGLT2 Inhibitor

Not well controlled (After 3 months)

Metformin + SU + TZD/ DPP4-I/ SGLt2-I

Metformin + TZD+ SU/ DPP4-I/SGLT2-I

Metfomin+ SGLT2-I + SU/ TZD/ DPP4-I

Metformin + DPP4-I+ SU/ TZD/ SGLT2-I

HbA1c. >10

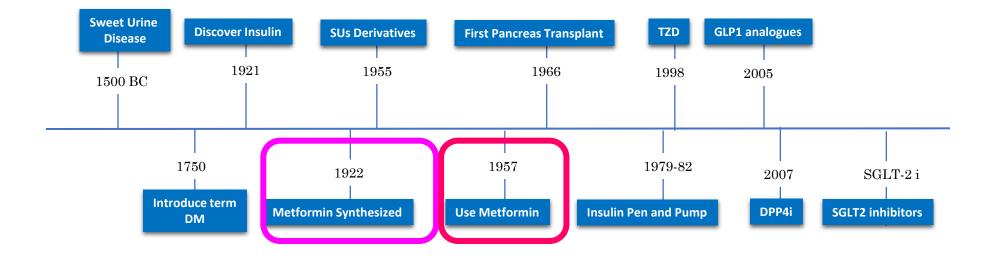
> Not well controlled (After 3 months) Oral triple therapy + Basal insulin

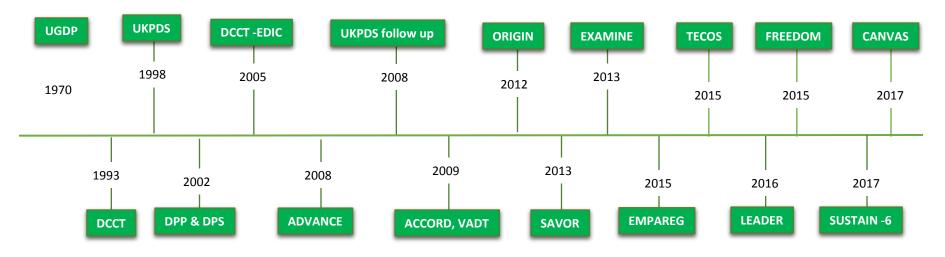
Current understanding of role of Metformin

in the management of diabetes?

Metformin

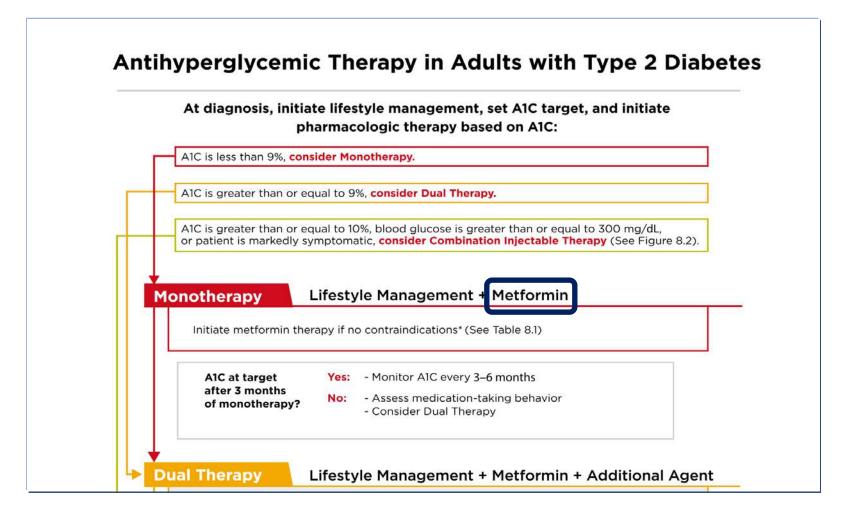
in the management of


- T2DM
 - CV Safety
 - Renal insufficiency
- T1DM
- Prevention of DM
- Pregnancy
- Beyond DM in PCOS and aging


Galega officinalis

also known as

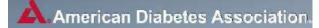
- goat's rue,
- French lilac,
- Italian Fitch,
- Spanish sainfoin or
- professor weed.
- used as a traditional medicine in medieval Europe
- it is now classed as a noxious weed in many states of the USA.


> 6 decades of metformin

Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S55-S64

Metformin – for type 2 DM

20180610 - Diabetes Panel Discussion



Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S55-S64

PHARMACOLOGIC THERAPY FOR TYPE 2 DIABET Frederican Diabetes Metformin 2018

- if not contraindicated and if tolerated → the preferred initial pharmacologic agent
- Long-term use of metformin → vitamin B12 deficiency → periodic measurement of vitamin B12 levels should be considered (especially in those with anemia or peripheral neuropathy)

[Diabetes Prevention Program Outcomes Study (DPPOS)]

Guidelines on second-and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus

2018

The WHO–PEN recommendations for
control of glycaemia in people with type
2 diabetes include
diet,

- physical activity and
- metformin as first-line treatment

The WHO–PEN recommendations for control of glycaemia in people with type 2 diabetes include diet, physical activity and metformin as first-line treatment; sulfonylurea as second-line treatment (or first-line treatment if metformin is contraindicated); and insulin as third line treatment. In the

Guideline Development Group

Name	Area of expertise	Affiliation
Amanda Adler	Health technology assessment, health	Addenbrooke's Hospital, Cambridge,
	economics, guideline development	UK
David Beran	Health systems research, access to insulin,	Geneva University Hospitals and
	access to diabetes care in low-resource settings	University of Geneva, Switzerland
Catherine Cornu	Pharmacology of diabetes medicines, evidence	Hospices Civils de Lyon, INSERM
	synthesis and appraisal, guideline development	Clinical Investigation Centre, Lyon, France
Pamela Donggo	Diabetes management, diabetes and infectious diseases co-morbidities	Lira Hospital, Lira, Uganda
Adel El Sayed	Diabetes management, cardiovascular complications	Sohag Faculty of Medicine, Sohag, Egypt
Edwin Gale	Management of diabetes, clinical epidemiology, qualitative evidence	University of Bristol, United Kingdom
Molly Lepeska	Person with diabetes, access to insulin in low- resource settings	Health Action International, Amsterdam, The Netherlands
Naomi Levitt	Pathophysiology of diabetes, acute and chronic complications of diabetes	Diabetic Medicine and Endocrinology, Department of Medicine at Groote Schuur Hospital and University of Cape Town, South Africa
lianhong Li	Public health, policy-making, epidemiology of noncommunicable diseases, programme implementation, primary health care	National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
Manuel Vera Gonzalez	Diabetes management in young people,	Diabetes Care Centre in Havana

	Tint Swe Latt	e Latt Management of noncommunicable diseases, primary health care			ases,	University of Myanmar	Medicine , Y	/angon,
9				medicines ผิงปีเสียงต์ก่างในก่องได้เสียงตระธรรม nel Dixo				- m - m

Why Metformin?

All the Guidelines Strongly recommended Metformin as First line

Pros	Cons		
Strong Efficacy (\downarrow HbA1c-1.5%)	GI Side Effects		
No Hypoglycemia	Can't use in severe renal, Cardiac and		
Weight Neutrality	Liver Failure		
Cardiovascular Safe			
Cheap			
Time-Tested Drugs (>60 yrs)			
Long Term Evidence			
Easily & Widely available			
Reduce Insulin Resistance			
Lipid Neutral and reduce LDL			
Reduce Cancer			

Metformin – Evidences of CVD outcome

Table 2–Randomized clinical trials involving metformin and CVD outcomes

Trial/year	Comparison	Study population	N	Main CVD outcome(s)	HR (95% CI)	Р
UKPDS 34 (4) (1998)	Metformin vs. diet Metformin vs. SU/insulin	Overweight, newly diagnosed T2D patients	1,704	All-cause mortality Myocardial infarction	0.64 (0.45, 0.91) 0.61 (0.41, 0.89)	NR 0.010
HOME (6) (2009)	Metformin vs. placebo	T2D patients on insulin	390	Expanded MACE*	0.61 (0.40, 0.94)	0.02
SPREAD-DIMCAD (7) (2013)	Metformin vs. glipizide	T2D patients with CAD	304	Expanded MACE ⁺	0.54 (0.30, 0.90)	0.026

CAD, coronary artery disease; MACE, major adverse cardiovascular events; NR, not reported; SU, sulfonylurea. *Myocardial infarction, acute coronary syndrome, coronary or peripheral revascularization, electrocardiogram changes, heart failure, stroke/transient ischemic attack. †Cardiovascular cause, death from any cause, nonfatal myocardial infarction, nonfatal stroke, or arterial revascularization.

Metformin – in Renal insufficiency

US FDA Drug Safety Communication:

FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function

- may be safely used in patients with mild to moderate renal impairment.
- the measure of kidney function → use glomerular filtration rate estimating equation (eGFR)

(because of additional parameters that are important, such as the patient's age, gender, race and/or weight)

Metformin – in Renal insufficiency

US FDA Drug Safety Communication:

- Starting of metformin
 - **obtain** eGFR before starting metformin
 - contraindicated when eGFR <30 mL/min/1.73 m².
 - not recommended for starting metformin when eGFR 30-45 mL/minute/1.73 m²
- Obtain an eGFR
 - at least annually in all patients
 - more frequently →In patients at increased risk for the development of renal impairment such as the elderly

Metformin – in Renal insufficiency

US FDA Drug Safety Communication:

- In patients taking metformin
 - eGFR < 45 mL/min/1.73 m² \rightarrow assess the benefits and risks of continuing treatment.
 - eGFR < 30 mL/min/1.73 m² \rightarrow Discontinue metformin
- Discontinue metformin at the time of or before an iodinated contrast imaging procedure in patients with
 - an eGFR between 30 and 60 mL/minute/1.73 m²;
 - a history of liver disease, alcoholism, or heart failure; or
 - intra-arterial iodinated contrast
- Re-evaluate eGFR 48 hours after the imaging procedure; restart metformin if renal function is stable.

Metformin in T1DM

Overall, studies suggest that metformin use

- \downarrow insulin dose requirement
- \downarrow weight and
- potentially, ↓ LDL-cholesteol.
- \downarrow atherosclerosis progression
- does not lead to sustained improvements in glycaemic control
- Hence, there appears to be potential for this drug to have glucose-independent effects that may be beneficial for those with type 1 diabetes.

[Reducing with Metformin Vascular Adverse Lesions (REMOVAL) study].

Metformin in Prevention of Diabetes

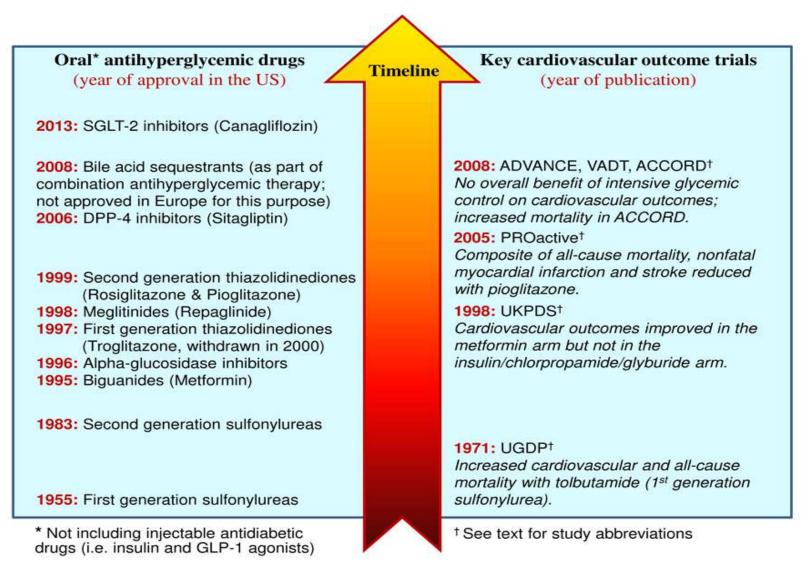
- The Diabetes Prevention Program (DPP) / DPP Outcomes Study (DPPOS) the largest and longest clinical trial of metformin for the prevention of diabetes
- metformin
 - ↓ diabetes incidence by 31% vs. placebo after 2.8 years follow-up,
 - \$\prisk (18%) still being observed over 10 and 15 years postrandomisation.
 - favorable effects on several cardiovascular risk factors (+)
- Hence, the findings from the DPP/DPPOS show promise for metformin use for the prevention of type 2 diabetes, with additional benefits extending to its cardiovascular complications.

Metformin in pregnancy

- Important insight into metformin use in pregnancy has been gained from studies of its use in PCOS.
- Metformin has been used in pregnancy for over 40 years.
- The drug crosses the placental barrier, and the proposed increased lactic acidosis risk and relatively hypoxic fetal environment have raised concerns about its use in pregnancy.
- However, studies in PCOS suggested that metformin does not increase congenital malformations or miscarriage.

Metformin and PCOS

- PCOS has metabolic consequences
 - insulin resistance
 - impaired glucose tolerance and
 - type 2 diabetes.
- Metformin was first shown to ameliorate hyperandrogenism in women with PCOS in the 1990s and,
- mechanism of action not fully understood
 - ↓ hepatic glucose output,
 - ↑ muscle glucose uptake and
 - regulate and rogen production by the ovary.


Metformin and ageing

- metformin can reduce
 - diabetes risk in those aged ≥ 60 years
 - ageing outcomes e.g., frailty and impaired physical and cognitive function
- potential mechanisms (independent of blood glucose regulation)
 - \downarrow inflammation and reactive oxygen species \rightarrow reduce DNA damage
 - effects on ceramides (which contribute to ↓ myoblast numbers in the elderly) may also help to improve tissue health and function.
 - Furthermore, cardio- and neuroprotective roles of metformin, and the impact of metformin on psychological health and cognitive function may also promote healthy ageing and increase lifespan.

[Valencia et al]

Role of Sulphonylurea in the current era of CVOT?

Over 60 vears Historv of Sulphanvlurea

AMERICAN DIABETES ASSOCIATION

At diagnosis, initiate lifestyle management, set AIC target, and initiate pharmacologic therapy based on AIC: AIC is less than 9%, consider Monotherapy. AIC is greater than or equal to 9%, consider Dual Therapy. AIC is greater than or equal to 10%, blood glucose is greater than or equal to 300 mg/dL, or patient is markedly symptomatic, consider Combination Injectable Therapy (See Figure 8.2).

Initiate metformin therapy if no contraindications* (See Table 8.1)

A1C at target after 3 months of monotherapy?

Dual Therapy

- Yes: Monitor A1C every 3–6 months
- No: Assess medication-taking behavior - Consider Dual Therapy

Lifestyle Management + Metformin + Additional Agent

WHAT IS NEXT AFTER METFORMIN

SCVD ?	Yes - Add agent proven to reduce major adverse
	Cardiovascular events and/or cardiovascular mortality
	(see recommendation with * on p.\$75 and Table 8.1)
	No - Add second agent after consideration of drug-specific effect
	and patient factors (See table 8.1)
	Triple Therapy Lifestyle Management - Matfermin - Two Additional Agents
	Triple Therapy Lifestyle Management + Metformin + Two Additional Agents Add third agent based on drug-specific effects and patient factors [#] (See Table 8.1)

consider agents from another class in Table 8.1. #GLP-1 receptor agonists and DPP-4 inhibitors should not be prescribed in combination. If a patient with ASCVD is not yet on an agent with evidence of cardiovascular risk reduction, consider adding.

SUMMARY OF CVOT TRIALS

	SGLT2 inhibitors		GLP-1 recept	tor agonists			DPP4 inhibit	tors	
	EMPA-REG	CANVAS June 2017	ELIXA 2015	LEADER 2016	SUSTAIN 2016	EXSCEL Sep 2017	SAVOR 2013	EXAMINE 2016	TECOS 2015
	Empagliflozin	Canagliflozin	Lixisenatide	Liraglutide	Semaglutide	Exenatide	Saxagliptin	Alogliptin	Sitagliptin
	SYNJARDY/ Glyxambi	FORXIGA/ XIGDUO	LYXUMIA	VICTOZA/ saxenda	NOT YET FDA APPROVED	BYDUREON	ONGLYZA/ Kombiglyze XR	Vipdomet/ Incresync	JANUVIA/ Janumet XR
	Boeh Ingelh	Janssen	Sanofi	Novo Nordisk	Novo Nordisk	AstraZeneca	AstraZeneca	Takeda	MSD
3-point MACE	-14% HR 0.86* 0.74-0.99	-14% HR 0.86* 0.75-0.97 p<0.001 for non- inferiority; p=0.02 for superiority	+2% HR 1.02 0.89-1.17	-13% HR 0.87* 0.78-0.97	-26% HR 0.74* 0.58-0.95	-9% HR 0.91 0.83-1.00	Neutral HR 1.0 0.89-1.12	-4% HR 0.96 upper ≤1.16	-2% HR 0.98 0.89-1.08 (4-point MACE including hospitalization for unstable angina)
CV death	-38% HR 0.62* 0.49-0.77	-13% HR 0.87 0.72-1.06	-2% HR 0.98 0.78-1.22	-22% HR 0.78* 0.66-0.93	-2% HR 0.98 0.65-1.48	-12% HR 0.88 0.76-1.02	+3% HR 1.03 0.87-1.22	-21% HR 0.79 0.60-1.04	+3% HR 1.03 0.89-1.19
NF MI	-33% HR 0.67* 0.70-1.09	-15% HR 0.85 0.69-1.05	+3% HR 1.03 0.87-1.22	-12% HR 0.88 0.75-1.03	-26% HR 0.74 0.51-1.08	-3% HR 0.97 ⁺ 0.85-1.10	-5% HR 1.95 0.80-1.12	+8% HR 1.08 0.88-1.33	-5% HR 0.95 0.81-1.11
NF stroke	+24% HR 1.24 0.92-1.67	-10% HR 0.90 0.71-1.15	+12% HR 1.12 0.79-1.58	- 11% HR 0.89 0.72-1.11	- 39% HR 0.61* 0.38-0.99	-15% HR 0.85† 0.70-1.03	+11% HR 1.11 0.89-1.39	-9% HR 0.91 0.55-1.50	-3% HR 0.97 0.89-1.08
Hospitaliz	-35%	-33%	-4%	-13%	+11%	-6%	+27%	+7%	Neutral
ation HF	HR 0.65* 0.50-0.85	HR 0.67* 0.52-0.87	HR 0.96 0.75-1.23	HR 0.87 0.73-1.05	HR 1.11 0.72-1.61	HR 0.94 0.78-1.13	HR 1.27* 1.07-1.51	HR 1.07 0.78-1.15	HR 1.00 0.83-1.20
All-cause	-32%	-13%	-6%	-15%	+5%	-14%	+11%	-12%	+1%
death	HR 0.68* 0.57-0.82	HR 0.87 0.74-1.01	HR 0.94 0.78-1.13	HR 0.85* 0.74-0.97	HR 1.05 0.74-1.50	HR 0.86* 0.77-0.97	HR 1.11 0.96-1.27	HR 0.88 0.71-1.09	HR 1.01 0.90-1.14
EMA warning FDA warning	Amputation risk	Amputation risk Amputation risk					HF risk	HF risk	

CVOT – focus only on patients with High CV risk

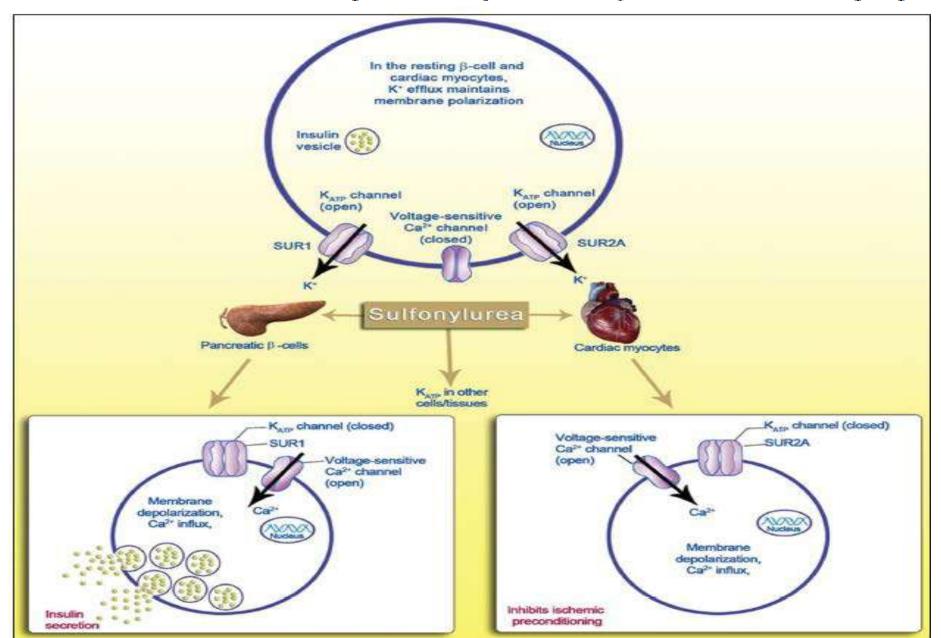
	EMPA-REG	LEADER	SUSTAIN-6	
Vs				
Patients	Pre Existing CVD	≥50 years + preexisting CVD, CKD,	≥50 years + preexisting CVD;	
		HF; ≥60 years + CVD risk factors	≥60 years + CVD risk factors	
Mean Age	63.1	64.3	64.6	
Hypertension	94%	90%	93%	
CVD	99%	81%	83%	
Stroke/TIA	47/23	31/16	47/23	
Statin Use	77%	72%	73%	
Met Patients	74%	73%	76%	

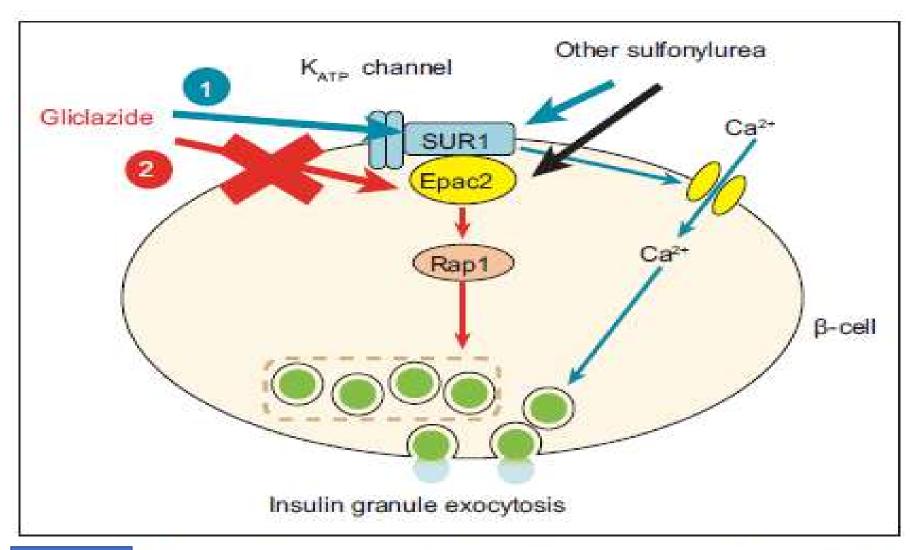
CV EFFECT OF DIFFERENT OADS (ADA 2018)

	ASCVD	CHF
SGLT2 inhibitors	BenefitsCanagliflozin	Benefits : • Canagliflozin
GLp1 Agonist	Empagliflozin Benefits: Liraglutide	Empagliflozin Neutral Myanmar
	Neutral : • Lixisentide • Exenatide Extended Release	 Availability ? Price ?
Metformin	Potential Benefits	Neutral
Sulfonylureas	Neutral	Neutral
Dpp4 inhibitors	Neutral	Potential Risk • Saxagliptin • Alogliptin
Pioglitazone	Potential Benefit : Pioglitazone	Increased Risk

Results of RCTs (Sulphanylureas)

Title of study/treatment	Patient numbers/study duration	Impact on CV morbidity (individual or composite end points)
Studies utilizing both first-generation of UKPDS 33 Conventional glucose-lowering versus intensive insulin versus intensive SU (chlorpropamide, glyburide or glipizide)	and second-generation SUs n = 3867; of whom, 1573 received SU, 1156 insulin and 1138 conventional treatment – median of 10-year FU Analysis restricted to n = 3041 from first 15 centres; of whom, 619 received chlorpropamide, 615 glibenclamide, 911 insulin and 896 conventional treatment – median 11.1 (IQR = 9.0–13.0) years FU	No difference in any CV outcome with individual drugs Combined SU/insulin reduced the risk of MI by 16% (p = 0.052) versus conventional treatment
UKPDS 80 Conventional glucose-lowering versus intensive insulin versus intensive SU (chlorpropamide or glibenclamide)	n = 2998; of whom, 2118 originated from the 2729 of the UKPDS, 33 receiving SU/insulin and 880 from the 1138 receiving conventional treatment – median 16.8-year FU (8.5-year FU after UKPDS 33)	Combined SU/insulin reduced risk for MI by 15% (p = 0.01) versus conventional treatment

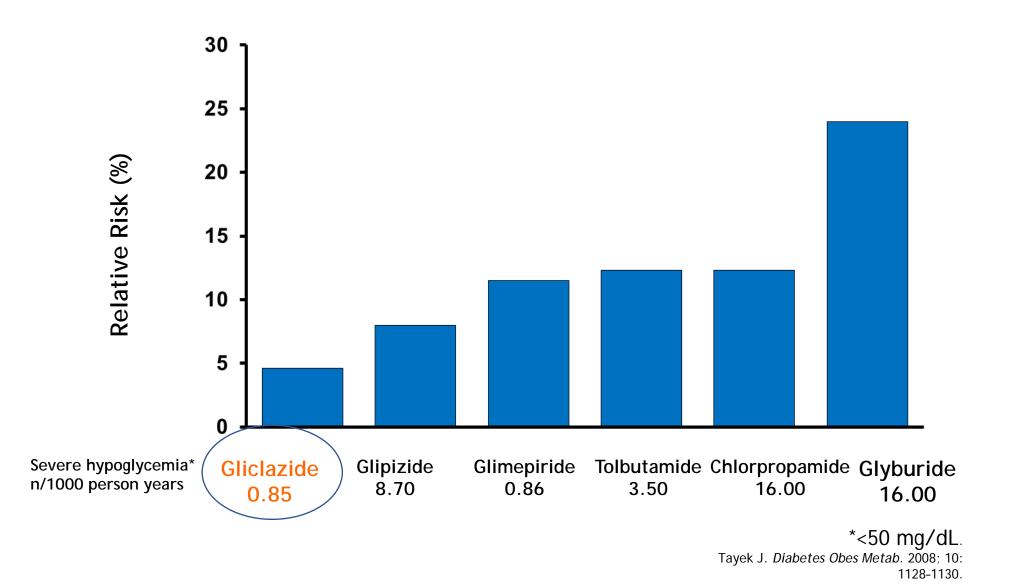

UKPDS: "Legacy Effect" of Insulin/Sulfonylurea Therapy


After median 8.8 years post-trial follow-up

Aggregate Endpoint		1997	2007
Any diabetes related endpoint	RRR:	12%	9%
	P :	0.029	0.040
Microvascular disease	RRR:	25%	24%
	P:	0.009	0.001
Myocardial infarction	RRR:	16%	15%
n en el la presión con debre estant el ballocomo en en en en en en el la presión en e	P :	0.052	0.014
All-cause mortality	RRR:	6%	13%
	P:	0.44	0.007

Holman RR, et al. New England Journal of Medicine 2008; 359:1577-1589

Mechanism of action of sulfonylureas on pancreatic β -cells and cardiomyocytes



Mechanism of action of gliclazide on pancreatic β-cells (SUR: Sulfonylurea receptor)

Hypoglycaemia with different Sulfonylureas

Ē

HbA1C Reduction with different OAD

Class/Drug	Suggested Dosing	Mechanism of Action	Expected AHbA1c (%)	Cost/ Month (US\$)
Biguanide				
Metformin	500-2000 mg/d	↓Gluconeogenesis	-1 to -2	4 (generic)
Sulfonylureas				
Glipizide Glimepiride	2.5–10 mg/d 1–4 mg/d	↑Insulin release	-1 to -2	4 (generic) 4 (generic)
Glinides				
Repaglinide	0.5–2 mg TID with meals	-		200 (generic)
Nateglinide	60–120 mg TID with meals	-		120
TZDs				
Rosiglitazone Pioglitazone	2–4 mg/d 15–30 mg/d	↓FFA release ↑Insulin sensitivity	-1 to -2	130 45 (generic)
SGLT2s				
Canagliflozin Dapagliflozin	100–300 mg/d 5–10 mg/d	↑ Glycosuria	-1 to -1.5	290 290
Alpha-glucosidase Inhibi	tors			
Acarbose	25–100 mg TID with meals	↓ Carbohydrate absorption	-0.5 to -1	45 (generic)
Bile Acid Sequestrants				
Colesevelam	3750 mg/d	Unclear	-0.5 to -1	335
Bromocriptine mesylate	1.6–4.8 mg/d	↑ CNS dopamine	-0.5	120

	Place of SUs in diabetes therapy			
Placement	Approach	Indication		
Initial therap	y Monotherapy	Contraindication to metformin Intolerance to metformin		
	Combination therapy with metformin	High blood glucose levels at presentation		
2 nd line therapy	Add on therapy	Inadequate glycemic control with metformin		
Subsequent add on thera		Inadequate glycemic control with existing oral therapy		
Special consideratio	Biological factors	Age >60		
		Renal impairment		
		Neonatal diabetes		
		MODY-3		
	Psychosocial factors	Ramadan*		
	Glucophenotype	Fasting hyperglycemia		
	1990)1990)1990(1990)1997)199	Postprandial hyperglycemia		

*Preferred SUs include modern SUs like glipizide MR, gliclazide, gliclazide MR, glimepiride. MR: Modified release, SUs: Sulfonylureas, MODY: Maturity-onset diabetes of the young

Class	Drug	CKD (stage 3-5)	Dialysis	Complications
Conventional SUs	Chlorpropamide	Reduce dose by 50% if GFR: 50-70 ml/min/1.73 m ² Avoid if GFR <50 ml/min/1.73 m ²	Avoid	Hypoglycemia
	Tolbutamide	Avoid	Avoid	Hypoglycemia
	Glibenclamide	Avoid	Avoid	Hypoglycemia
Modern SUs	Glimepiri de	Start at low dose: 1 mg/day	Avoid	Hypoglycemia
	Gliclazide	No dose adjustment (ref. NKF 2012 guidelines)	Avoid/low dose and careful monitoring	Hypoglycemia
	Glipizide	No dose adjustment	No dose adjustment	Hypoglycemia
	Gliclazide MR	No dose adjustment (ref. NKF 2012 guidelines)	Avoid/low dose and careful monitoring	Hypoglycemia

GFR: Glomerular filtration rate, CKD: Chronic kidney disease, MR: Modified release, SUs: Sulfonylureas

Guidelines on second-and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus

 Give a sulfonylurea* to patients with type 2 diabetes who do not achieve glycaemic control** with metformin alone or who have contraindications to metformin (strong recommendation, moderate quality evidence).

• Glibenclamide should be avoided in patients aged 60 years and older. Sulfonylureas with a better safety record for hypoglycaemia (e.g. gliclazide) are preferred in patients for whom hypoglycaemia is a concern

Review Article

Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement

Clinical issues associated with the use of SUs are agent-specific. Careful choice of SU, appropriate dosage, timing of administration, adequate patient counseling and considering their efficacy, safety, pleiotropic benefits, and low cost of therapy, SUs should be considered as recommended therapy for the treatment of diabetes in South Asia.

Kalra S, Aamir AH, Raza A, Das AK, Azad Khan AK, et al (2015)Indian J Endocr Metab;19:577-96.

"SAFE & SMART" Use of Sulfonylureas in the Management of **Type 2 Diabetes Mellitus** in South Asia -**A Consensus Statement**

An initiative by SAFES (South Asian Federation of Endocrine Societies)

2nd SAFES Summit 24-26 April, 2015 Dhaka, Bangladesh

The South Asian Federation of Endocrine Societies (SAFES) is an association of five national professional bodies in South Asia: The Endocrine Society of Bangladesh, Endocrine Society of India, Diabetes and Endocrine Association of Nepal, Pakistan Endocrine Society, and Endocrine Society of Sri Lanka. SAFES aims to bring together its members, to share and learn from each other, and contribute to the growth of endocrinology in South Asia and beyond.

Kalra S, et al. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement. Indian J Endocrinol Metab. 2015 Sep-Oct;19(5):577-96.

"SAFE & Smart" **Use of Sulfonylureas**

- Practice Points for optimal use of this essential class of drugs in T2DM
 - Place of SU in current diabetes management
 - Addressing concerns with SU treatment
 - Hypoglycemia, Weight changes, Durability, CV risk, etc
 - Choosing among the SUs
 - Translating evidence into practice
 - Patient selection, drug selection, dose selection, patient empowerment & physician empowerment
- Executive Summary released at the 2nd SAFES Summit, Dhaka on 24 April, 2015

A: Indications of SUs

A1. SUs are an **effective**, **safe**, **well tolerated**, **affordable & convenient therapeutic option** in the management of T2DM.

A2. SUs are effective second line agents after metformin, in the management of T2DM. SU monotherapy as first line may be considered in Type 2 Diabetes with metformin intolerance/ contraindication and in patients with **MODY**.

A3. Modern SUs should be initiated early in the course of T2DM, to achieve maximum glycemic benefits and obtain the benefits of metabolic memory.

A4. SU - containing dual or triple FDCs, if available, (with drugs that have complementary modes of action) reduce cost, offer convenience, and improve patient adherence.

Kalra S, et al. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement. Indian J Endocrinol Metab. 2015 Sep-Oct;19(5):577-96.

B1. Modern SUs should be preferred over conventional SUs in view of the reduced mortality, better CV outcomes, and renal protection.

B2. Modern SUs should be preferred over conventional SUs in T2DM patients at increased risk of hypoglycemia.

B3. Modern SUs should be the preferred choice of SU in overweight/obese T2DM patients.

B4. **Modern SUs** should be preferred over conventional SUs in patients at increased risk of CVD or with CVD.

Kalra S, et al. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement. Indian J Endocrinol Metab. 2015 Sep-Oct;19(5):577-96.

To Conclude...

- This initiative by SAFES aims to encourage rational, safe and smart prescription of SUs
- Considering their efficacy, safety, pleiotropic benefits, and low cost of therapy, SUs should be considered as recommended therapy for the treatment of diabetes in South Asia.
- Modern SUs (gliclazide MR, Glimepiride) are backed by a large body of evidence, experience, and most importantly, outcome data, which supports their role in managing patients with diabetes.
- Person-centred care, i.e., careful choice of SU, appropriate dosage, timing of administration, and adequate patient counseling, will ensure that deserving patients are not deprived of the advantages of this well-established class of antidiabetic agents

Kalra S, et al. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement. Indian J Endocrinol Metab. 2015 Sep-Oct;19(5):577-96.

CII				
30	LPN	AN	YLU	REA

Efficay	Hypo- glycemia	Weight changes	CV effect	S	COST
			ASCVD	CHF	
High	Yes	Gain	Neutral	Neutral	Low

Current concepts and practice of Insulin Therapy?

If RBS control is difficult

- Always ask about other medications
 - Steroids
 - Thiazide
 - Beta-blockers
- Always check diets
- Always check sepsis and stress
 - Skin carbuncle, abscess, gan
 - Foot ulcer
 - Lungs TB, Pneumonia
 - Renal UTI, pylonephritis
 - Stroke/MI

Compliance of drugs

Clinical inertia

clinical inertia', defined as 'failure of healthcare providers to initiate or intensify therapy when indicated)

Maximum dose of 3 drugs Not control for 3 months Drugs failure Time for insulin

Progression of type 2 diabetes:

Impairment of beta cell function

- Hyperglycaemia
 - HbA_{1c}
 - Fasting glucose
 - Postprandial glucose

Present therapeutic options frequently cause

- Weight gain
- Hypoglycaemia

Poor metabolic control causes

Diabetic late complications

Is earlier insulin therapy

the solution?

Guidelines on second-and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus

2018

Metformin Metformin +SU Metformin+SU+insulin

If insulin not available

DPP4 inhibiors ,SGLT 2 inhibitor or TZD can be added Key recommendations of the guidelines are:

Hypoglycaemic agents for	second and third-line	treatment in type 2 dial	
Trypogrycaetine agents to	second and child	creatment in type 2 that	

 Give a sulfonylurea* to patients with type 2 diabetes who do not achieve glycaemic control** with metformin alone or who have contraindications to metformin (strong recommendation, moderate quality evidence).

Remarks

* Glibenclamide should be avoided in patients aged 60 years and older. Sulfonylureas with a better safety record for hypoglycaemia (e.g. gliclazide) are preferred in patients for whom hypoglycaemia is a concern (people who are at risk of falls, people who have impaired awareness of hypoglycaemia, people who live alone, people who drive or operate machinery

as part of their job).

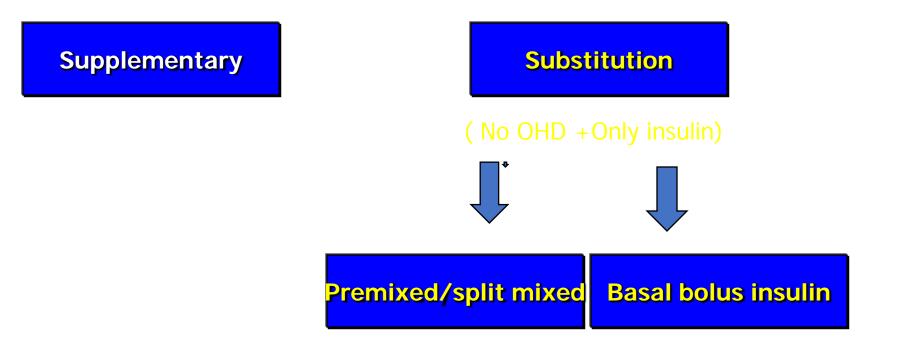
** The WHO PEN protocol recommends a target fasting blood glucose of <7 mmol/L (126 mg/dl). However, an individualized approach is encouraged in setting the patient's target level for glycaemic control, taking into account their comorbidities, risks from medication side-effects and their likely benefit from tight glycaemic control in view of life expectancy.</p>

 Introduce human insulin treatment to patients with type 2 diabetes who do not achieve glycaemic control with metformin and/or sulfonylurea (strong recommendation, very lowguality evidence).

 If insulin is unsuitable*, a DPP-4 inhibitor, SGLT-2 inhibitor or a TZD may be added (weak recommendation, very low-quality evidence).

Remark

* Insulin treatment could be unsuitable when circumstances make its use difficult (e.g. persons who live alone and are dependent on others to inject them with insulin).

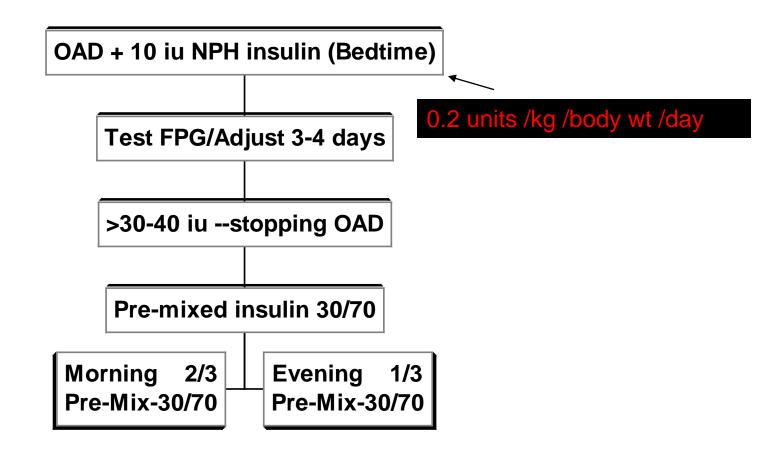

When to start Insulin in Type 2 DM?

- At onset:
 - If the blood glucose values are very high
 - Fasting > 250 mg/dl
 - postprandial > 300 mg/dl
 - HbA1C >9%
 - (Osmotic Symptoms , Sign & Symptoms of major organ decompensation)
 - Type 2 DM with major stress
 - Major medical illnesses (e.g., MI, Stroke)
 - Severe infection (e.g., Extensive Koch's Lung, Lobar Pneumonia, Severe Bronchopneumonia, Curbuncles)
 - Major Operation (e.g., Laprotomy, Hystrectomy)
 - Diabetes in Pregnancy (GDM or Pre-GDM)
 - Diabetes Emergency (e.g., DKA, HHS (HONK), Lactic Acidosis, Hypoglycaemia)

When to start Insulin in Type 2 DM?

- Poor glycemic control in spite of optimal dose of two or three OADs
 - Fasting >150 mg/dl
 - Random or Postprandial >200 mg/dl
 - HbA1C >9%
- Diabetic Kidney Disease/CKD/
- Chronic Liver Disease
- Steroid Therapy
- Proliferative retinoipathy, maculopathy & painful neuropathy

TWO basic INSULIN REGIMENS



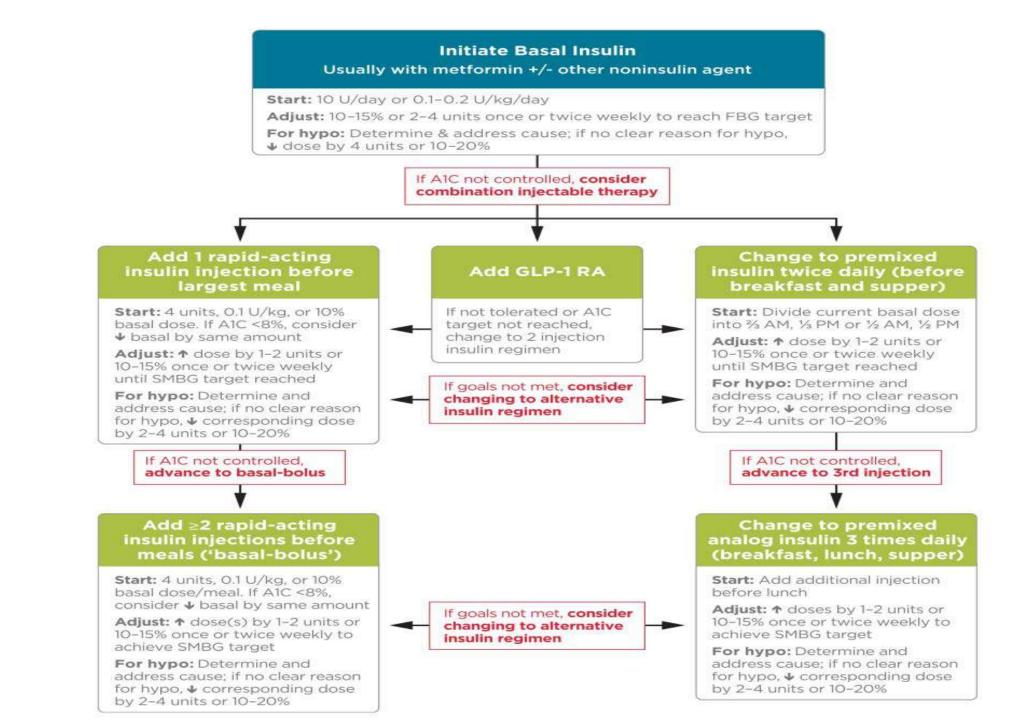
Insulin Regimen for Type 2 Diabetes Mellitus

Guidelines for initiating insulin

Chart Guidelines for Starting Insulin Therapy

(Asia Pacific Type 2 Diabetes Policy group)

Insulin practicalities


Storage

- One month in fridge or at room temperature once the vial has been opened
- Must never be frozen
- Store away from source of heat
- If refrigeration not available store in clay pot or hole in ground
- May be damaged by direct sunlight or vigorous shaking

Combination Injectable Therapy in T2DM

How to prevent cardiovascular diseases in Diabetes?

Macrovascular Damage Affects Large Arteries -Atherosclerosis

Coronary artery disease (CAD)

Subjects with diabetes have 2-4 times higher risk of CAD

Haffner et al, 1998

Peripheral vascular disease (PVD)

Subjects with diabetes have 2-3 times higher risk of PVD -Becks et al, 1995

Stroke / Cerebrovascular disease (CVD) Subjects with diabetes have 2-4 times higher risk of CVD

Malmberg et al, 2000

208

The Ticking Clock Hypothesis

For microvascular complications, the clock starts ticking only at the onset of hyperglycemia (i.e. once diabetes develops)

For macrovascular disease, the clock starts ticking even at the stage of pre-diabetes

CORONARY ARTERY DISEASE

Indications for CAD Screening in Asymptomatic Patients with Diabetes

Routine screening of asymptomatic individuals not recommended, since it does not improve outcomes (ADA, 2013)

Screening may be useful in the presence of

- Other atherosclerotic vascular disease
- Resting ECG suggestive of ischemia or MI
- Renal disease
- Presence of other diabetes complications
- Male sex; age >65;
- Presence of other risk factors
- Hypertension
- Dyslipidemia
- Smoking habit
- Physical inactivity
- Abdominal obesity

211

Prevention of CVD in Prediabetes: Recommendation

 Screening for and treatment of modifiable risk factors for cardiovascular disease is suggested for those with prediabetes. B

Primary Prevention-Role of Aspirin

Consider low dose (75 to 162 mg/day) aspirin in all patients with diabetes and no previous history of vascular disease who are at increased CVD risk and who are not at increased risk of bleeding.

These include most patients above age 50 who have one or more of the following:

- Hypertension
- Dyslipidemia
- Smoking
- Family history of premature CVD
- Albuminuria

12/18/2018

Primary Prevention

• Achieve lipid goals

Consider moderate to high intensity statin for all patients

Achieve non-HDL and HDL- cholesterol goal

Achieve BP goal

Secondary Prevention

- Antiplatelet therapy
- Beta-blockers
- ACEI

Statins

Antiplatelet Agents: Recommendations

- Use aspirin therapy (75-162 mg/day) as a secondary prevention strategy in those with diabetes and a history of ASCVD. A
- For patients with ASCVD and documented aspirin allergy, clopidogrel (75 mg/day) should be used. B
- •Dual antiplatelet therapy (with low-dose aspirin and a P2Y12 inhibitor) is reasonable for a year after an acute coronary syndrome A and may have benefits beyond this period. B

Modalities for CAD Screening

Exercise stress test (TMT) - may not be useful in asymptomatic patients

Cardiac CT - A coronary calcium score >400 is indication for further testing

PET scanning/stress echo/cardiac MRI

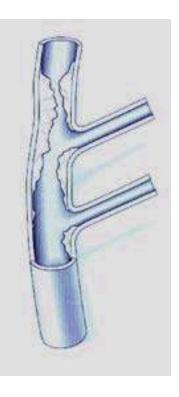
Use clinical judgment to decide on advanced cardiac evaluation

When medical therapy fails, invasive procedures are required

• PTCA: flattening the plaque with a balloon-tipped catheter to open the artery

Stents: tubes inserted after angioplasty that prop open a onceclogged artery

• CABG: grafting vessels to bypass lesions Long-term outcome in patients with diabetes is worse than in those without BARI,2000


There do not appear to be long-term differences in outcome between PTCA and CABG in patients with diabetes FREEDOM trial, 2014

PERIPHERAL VASCULAR DISEASE

Peripheral Vascular Disease

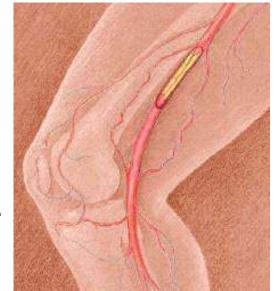
Peripheral vessels affected are

- The Iliac arteries (lower abdomen leading to the legs)
- The femoral and popliteal arteries (legs)
- The tibial and peroneal arteries (legs)
- The renal arteries (kidneys)
- The subclavian arteries (arms)

Differences in Diabetic and Non-diabetic PVD

	DIABETIC	NON-DIABETIC
CLINICAL	More common Younger patient More rapid Progression	Less common Older patient Less rapid progression
MALE:FEMALE	M = F	M > F
OCCLUSION	Multisegmental	Single Segment
VESSELS ADJACENT TO OCCLUSION	Involved	Not Involved
COLLATERALS	Involved	Usually normal
LOWER EXTREMITIES	Both	Unilateral
VESSELS INVOLVED	Tibials, Peroneals	Aortalliac, Femoral

Signs and Symptoms of PVD


- Intermittent claudication
- Nocturnal / rest pain
- Non-healing ulcer in the most distal part of the foot
- Cold legs or feet Absent pulses
- Color change in skin of legs or feet Gangrene
- Loss of hair on legs
- Shiny atrophic skin
- Thick toenails
- Calcification of blood vessels

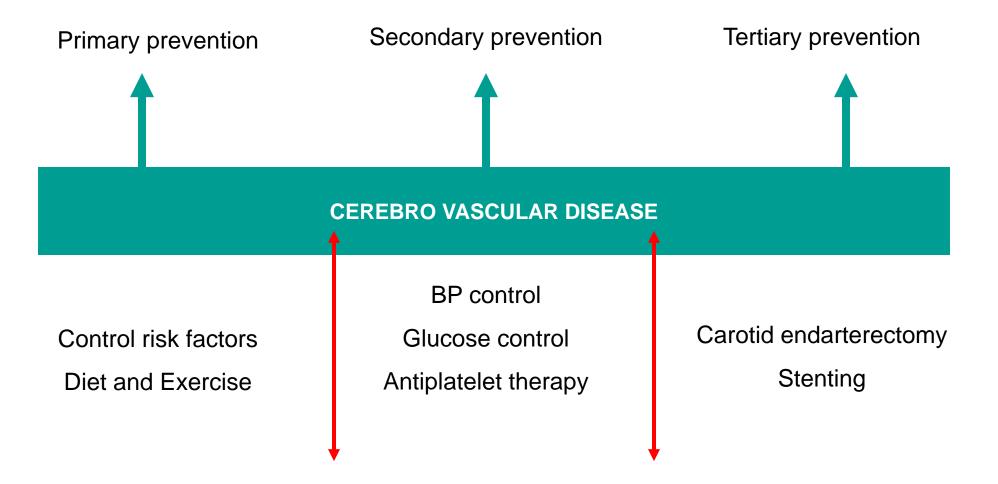
Diagnosis of PVD

- Ankle brachial index (less than 0.9 indicates PVD)
- Arterial duplex colour doppler
- Magnetic resonance angiography
- Spiral CT/Multislice CT
- Peripheral digital subtraction angiography

Management of Peripheral Vascular Disease

- Drugs like cilostazol can provide symptomatic relief of claudication
- For clots, a thrombolytic drug such as coumadin or heparin may be used
- Angioplasty [Balloon catheters, stents, stentgrafts, atherectomy, laser assistance]
- Bypass surgery

CEREBROVASCULAR DISEASE


Clinical Classification of Stroke

• Completed stroke

Major

- Minor
- Evolving stroke
- Transient Ischaemic Attack (TIA)

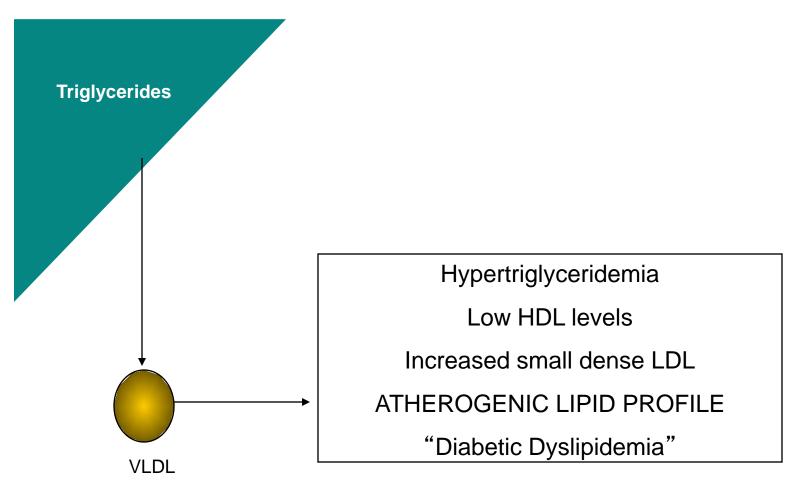
Prevention

Management - Infarction

- Persistent hyperglycemia is an indicator of poor prognosis
- Insulin therapy should be considered if glucose levels are high (>140 mg/dl)
- Ideal to maintain blood glucose levels between 140-180 mg/dl.
- BP, if high, should be reduced cautiously
- BP >185/110 mm Hg is a contraindication for thrombolysis

Strategies for CAD Risk Reduction in Patient with Diabetes

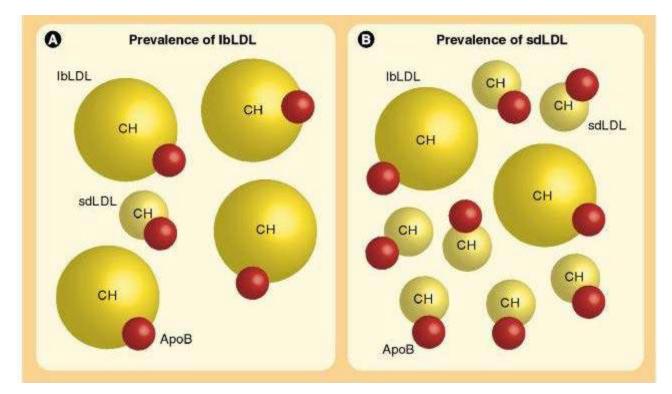
TEN POINT FORMULA


1. Early Identification of diabetes

- 2. Good control of diabetes
- 3. Control of hyperlipidemia
- **4.** BP control
- 5. Aspirin where indicated

- 6. Dietary modification
- 7. Exercise
- 8. Weight reduction
- 9. Quit smoking
- 10. Relaxation techniques

Current Lipid Guidelines: Practical Highlight?


Pathogenesis of Diabetic Dyslipidemia

Ē

Predominance of Small Dense LDL

For any given LDL concentration, the *number* of particles will be more if there is a preponderance of small dense LDL

CV risk depends on the *number* of atherogenic lipoprotein particles rather than the cholesterol concentration per se

Dr Ye Myint Lipid Lotte

Recommendations for Statin Use in Diabetes

(ACC/AHA- recommended by ADA)

Age	Risk factors	Recommended statin dose [*]	Monitoring with lipid panel	
<40 years	None	None	Annually or as	
	CVD risk factor(s)**	Moderate or high	needed to monitor	
	Overt CVD***	High	for adherence	
40–75 years	None	Moderate		
	CVD risk factors	High	As needed to monitor adherence	
	Overt CVD	High	monitor adherence	
>75 years	None	Moderate	As needed to	
	CVD risk factors	Moderate or high		
	Overt CVD	High	monitor adherence	

* In addition to lifestyle therapy.

** CVD risk factors include LDL cholesterol ≥ 100 mg/dL (2.6 mmol/L), high blood pressure, smoking, and overweight and obesity.

*** Overt CVD includes those with previous cardiovascular events or acute coronary syndromes.

Moderate vs High Intensity Statin Therapy

High-Intensity Statin Therapy	Moderate-Intensity Statin Therapy
Lowers LDL-C by ~> 50%	Lowers LDL-C by ~ 30% to <50%
Atorvastatin 40-80 mg	Atorvastatin 10 mg (20 mg)
Rosuvastatin 20 mg (40 mg)	Rosuvastatin 5 mg (10 mg)
	Simvastatin 20-40 mg
	Pravastatin 40 mg (80 mg)
	Lovastatin 40 mg
	Fluvastatin XL 80 mg
	Fluvastatin 40 mg bid
	Pitavastatin 2-4 mg

Doses in parentheses have not been evaluated in randomised trials

NCEP ATP III Classification of Lipid Levels

Lipid profile to be obtained after 9 to 12 hour fast

Risk	LDL Cholesterol	HDL Cholesterol (mg/dl)		Triglyceride (mg/dl)	Cholesterol (mg/dl)
	(mg/dl)	Males	Females		
High	<u>></u> 160	< 40	< 50	<u>></u> 200	<u>></u> 240
Borderline	<u>></u> 130 - 159	40 - 59	50 - 69	150 - 199	200 - 239
Desirable	100 - 129	> 60	> 70	< 150	< 200
Optimal	< 100	-	-	-	-

In individuals at very high risk for CAD, an LDL target of <70 mg/dl may be an option

How Often To Test ?

- Screen patients with diabetes with a fasting lipid profile at the time of first diagnosis, at the initial medical evaluation and/or at age of 40 years
- Repeat screening periodically thereafter (e.g. every 1 to 2 years)

If the patient's blood glucose levels are very high at the time of first evaluation, lipid profile should be repeated after euglycemia is achieved

Approach To Management

- Therapeutic lifestyle change
- Improvement of glycemic control
- Drugs

Therapeutic Lifestyle Change

Weight loss

Reduces TGL and increases HDL-C

Modest effects on LDL-C

Diet

Saturated fat restricted to <7% of total fat

Cholesterol <200 mg/day

Increased dietary fibre

Increased physical activity

Patients on TLC should be reviewed every 3 to 6 months and considered for pharmacotherapy if needed

Improvement in Glycemic Control

Can modestly reduce TGL levels

Usually no effect on HDL or LDL

Metformin, SU and acarbose reduce TGL levels

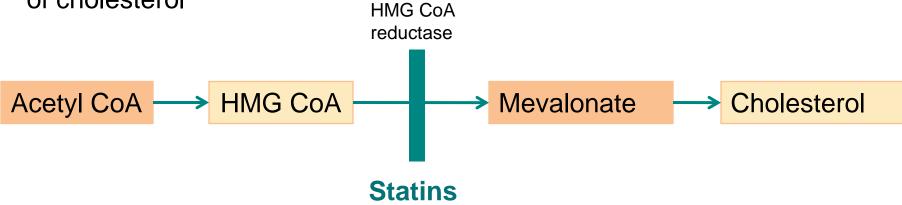
Pioglitazone reduces TGL levels, but increases both HDL and LDL levels

SGLT2 inhibitors have been shown to increase both LDL and HDL levels

Drug Therapy

Indications

- Simultaneously with TLC (most patients with diabetes will come under this category)
- If TLC fails to achieve targets after 3 months


Options

HMG CoA reductase inhibitors ("statins") are the drug of choice for dyslipidemia in diabetes

Other agents such as fibrates and ezetimibe may be useful in selected situations

Statins

Inhibit HMG CoA reductase, a key enzyme in the biosynthetic pathway of cholesterol

Significantly reduce LDL-C; more modest effects on HDL and TGL

e.g. Simvastatin, atorvastatin, rosuvastatin

Pleiotropic Effects of Statins

- Regression of atheroma
- Plaque stabilisation
- Antiinflammatory effect
- Antithrombotic effect
- Improve endothelial function

Statin & ASCVD

- Meta-analyses, including data from over 18,000 patients with diabetes from14 randomized trials of statin therapy (mean follow-up 4.3 years), demonstrate a
- 9% proportional reduction in all-cause mortality and
- 13% reduction in vascular mortality for each mmol/L (39 mg/dL) reductionin LDL cholesterol

Adverse Effects of Statins

- Myopathy- ranging from nonspecific myalgias to frank rhabdomyolysis
- GI side effects- nausea, flatulence
- CNS side effects- insomnia, nightmares
- New onset of diabetes and worsening of hyperglycemia have been reported but these are rare and should not preclude use of statin (benefit far outweighs the risk)

Contraindicated in pregnancy

Measure liver enzymes before starting treatment, subsequent measurements only on clinical indication; levels >3 times ULN warrant discontinuation of statin

Statin& Risk of DM

- The absolute risk increase was small
- (over 5 years of follow-up,1.2% of participants on placebo developed diabetes and 1.5% on rosuvastatin developed diabetes)
- A meta-analysis of 13 randomized statin trials with 91,140 participants showed an odds ratio of 1.09 for a new diagnosis of diabetes,
- so that(on average) treatment of 255 patients with statins for 4 years resulted in one additional case of diabetes while simultaneously preventing 5.4 vascular events among those 255 patients

Statins and the Liver

- Elevations in transaminase levels do not reflect hepatic injury per se; the best indicator of true liver injury is the serum bilirubin level. <u>1</u>
- Meta-analyses of randomized placebo controlled trials demonstrate that low to moderate dosages of statins are not associated with clinically significant (i.e., greater than three times the upper limit of normal) elevations in transaminase levels.<u>2,8</u>
- Maximal recommended dosages of lovastatin (Mevacor), <u>9</u> pravastatin (Pravachol),<u>10</u> simvastatin (Zocor),<u>11</u> atorvastatin (Lipitor),<u>8</u> and rosuvastatin (Crestor)<u>8</u> were associated with modest but notable increases in transaminase levels.
- Many of these elevations will resolve with continued therapy.

Considerations for Safe Use of Statins: Liver Enzyme Abnormalities and Muscle Toxicity

- R. CLARK GILLETT, JR., MD, and ANGELICA NORRELL, PharmD, Columbus Regional Healthcare System, The Medical Center, Columbus, Georgia
- Clinically important drugs that interact with statins and increase the risk of adverse effects include fibrates, diltiazem, verapamil, and amiodarone.
- (Am Fam Physician. 2011;83(6):711-716. Copyright © 2011 American Academy of Family Physicians.)

SORT: KEY RECOMMENDATIONS FOR PRACTICE

- Elevated transaminase levels and nonalcoholic fatty liver disease are not contraindications to statin use. C
- Stable hepatitis C infection is not an absolute contraindication to statin use. C
- Statin-induced myopathy is dose-related and may occur with all statins. C
- Baseline levels of creatine kinase need to be obtained only in patients at high risk of muscle toxicity. C

C = consensus, disease-oriented evidence, usual practice, expert opinion, or case series.

Ezetimide

Table 9.2-Recommendations for statin and combination treatment in adults with diabetes

Age	ASCVD	Recommended statin intensity [^] and combination treatment [*]
<40 years	No Yes	None [†] High • If LDL cholesterol ≥ 70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)#
≥40 years	No Yes	Moderate‡ High • If LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)

*In addition to lifestyle therapy. For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used. +Moderate-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. ASCVD risk factors include LDL cholesterol ≥100 mg/dL (2.6 mmol/L), high blood pressure, smoking, chronic kidney disease, albuminuria, and family history of premature ASCVD. ‡High-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. #Adults aged <40 years with prevalent ASCVD were not well represented in clinical trials of non-statin-based LDL reduction. Before initiating combination lipid-lowering therapy, consider the potential for further ASCVD risk reduction, drug-specific adverse effects, and patient preferences.

PCSK 9 inhibitors

Effect of PCSK9 Inhibitors on Clinical Outcomes in Patients With

Hypercholesterolemia: A Meta-Analysis of 35 Randomized Controlled Trials

Aris Karatasakis, MD; Barbara A Danek, MD; Judit Karacsonyi, MD; Bavana V Rangan, BDS, MPH; Michele K Roesle, RN, BSN; ThomasKnickelbine, MD; Michael D Miedema, MD, MPH; Houman Khalili; MD; Zahid Ahmad, MD; Shuaib Ab**d**ullah, MD; Subhash Banerjee, MD;Emmanouil S. Brilakis, MD, PhD

 Conclusions-—Treatment with a PCSK9 inhibitor is well tolerated and improves cardiovascular outcomes. Although no overall benefit was noted in all-cause or cardiovascular mortality, such benefit may be achievable in patients with higher baseline low density lipoprotein cholesterol.

(JAm Heart Assoc. 2017;6:e006910. DOI: 10.1161/JAHA.117.006910.)

Fibrates

Activate PPAR- α in liver, muscle and adipose tissue leads to

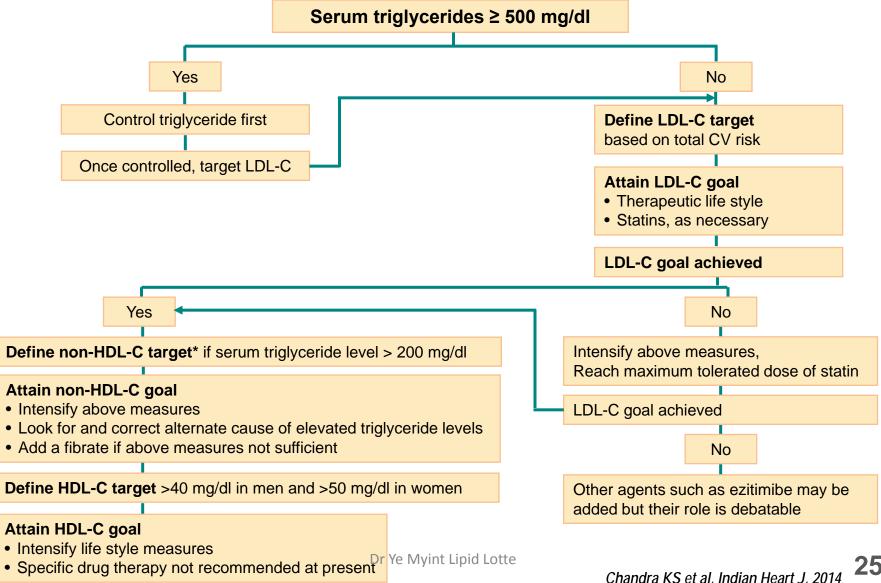
- Activation of lipoprotein lipase
- Increased fatty acid oxidation
- Increased HDL synthesis
- Increased clearance of remnant lipoproteins

Net effects- reduce TGL, raise HDL, modestly reduce LDL

Examples- gemfibrozil, fenofibrate, bezafibrate

Side effects- myopathy, hepatotoxicity, raised serum creatinine (fenofibrate)

Large clinical trials have not shown improvement in CV endpoints with fibrate use; however, in the FIELD trial, there was a reduction in microvascular complications


Finofibrate & Specific role

• Prespecified subgroup

analyses suggested heterogeneity in treatment effects with possible benefit for men with both a triglyceride level >204 mg/dL (2.3 mmol/L) and an HDL cholesterol level <34 mg/dL (0.9 mmol/L)

• Ginsberg HN, Elam MB, Lovato LC, et al.; ACCORDStudy Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563–1574

Conclusion

12/18/2018

253

253

Chandra KS et al, Indian Heart J, 2014

Current Guidelines on Hypertension and its

implication in Diabetes Management?

Special Communication

2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8)

Recommendation 5

- In the population age ≥18 years with diabetes, initiate pharmacologic treatment at
 - SBP \geq 140 mmHg or
 - DBP \geq 90 mmHg and
- treat to a
 - goal SBP \leq 140 mmHg and
 - goal DBP \leq 90 mmHg

Diabetes Mellitus

COR	LOE	Recommendations for Treatment of Hypertension in Patients With DM
•	SBP: B-R ^{sr}	In adults with DM and hypertension, antihypertensive drug treatment should be initiated at a BP of 130/80 mm Hg or
•	DBP: C-EO	higher with a treatment goal of less than 130/80 mm Hg.
I	A ^{SR}	In adults with DM and hypertension, all first-line classes of antihypertensive agents (i.e., diuretics, ACE inhibitors, ARBs, and CCBs) are useful and effective.
llb	B-NR	In adults with DM and hypertension, ACE inhibitors or ARBs may be considered in the presence of albuminuria.

SR indicates systematic review.

2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management 20180610 - Diabetes Panel Discussion of High Blood Pressure in Adults Whelton PK, et al. 2017 High Blood Pressure Clinical Practice Guideline

2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults

life is why™

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

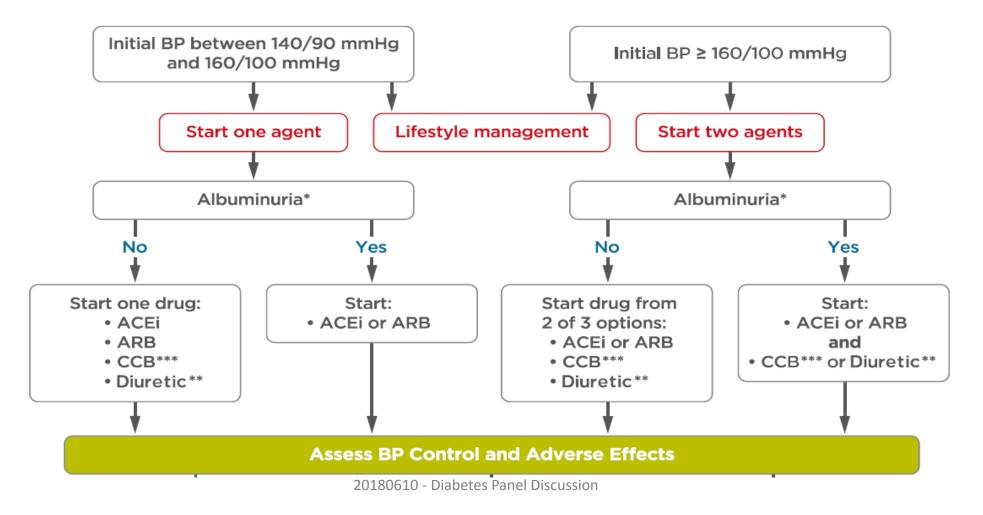
Hypertension in Patients With Comorbidities

	Target	Initial (first-line)
DM	<130/80	all first-line classes of antihypertensive agents (i.e., diuretics, ACEIs, ARBs, and CCBs)
DM + albuminuria		ACEI / ARB

ADA 2018

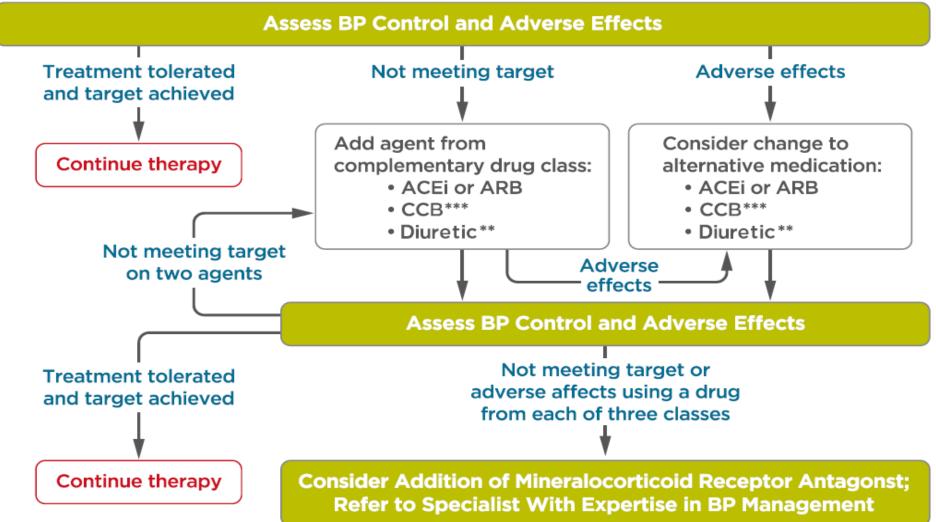
American Diabetes Association, MANAGEMENT OF BLOOD PRESSURE

Screening & Dx	Measure BP at every visit, confirm ↑BP with multiple readings including that on separate day	
Monitoring	Should monitor BP at home	
Goals	$DM + HTN \longrightarrow <140/90 \text{ mmHg}$ $DM + HTN + \text{high risk of CVD} \rightarrow <130/80 \text{ or}$ $<120/80 \text{ mmHg}$ (if they can be achieved without undue treatment burden) $DM + HTN + Pregnancy \longrightarrow <120-160/80-105$ $mmHg$	
	(in 2016 ADA - BP targets - 110–129/65–79 mmHg)	


ADA 2018

American Diabetes Association PRESSURE

Lifestyle	■ Indication $\rightarrow >120/80$
intervention	• Weight $\downarrow \rightarrow$ if overweight or obese
	 DASH (Dietary Approaches to Stop Hypertension)
	↑ physical activity
Pharmacologic	■ Indication $\rightarrow \geq 140/90$
intetrventions	≥160/100 → initiate with 2 drugs or single-pill combination
Drug choices	 ACEI, ARB, thiazide-like diuretics, dihydropyridine CCB
	 Generally – multiple drug therapy is required
	NOT recommend – ACEI + ARB or ACEI + ARB + direct Renin
	Inhibitor
	■ DM + HTN + UACR ≥300 mg/g or 30-299 mg/g → ACEI or
	ARB
	Resistant Hypertension – mineralocorticoid receptor antagonist



Recommendations for the Treatment of Confirmed Hypertension in People With Diabetes

American Diabetes Diabetes Association, MANAGEMENT OF BLOOD PRESSURE

ADA 2018

Thank You